isoparametric submanifolds
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)



2020 ◽  
Vol 378 (1-2) ◽  
pp. 289-315
Author(s):  
Xiaobo Liu ◽  
Chuu-Lian Terng






2019 ◽  
Vol 63 ◽  
pp. 137-144
Author(s):  
Daniel F. Bustos ◽  
Jaime B. Ripoll ◽  
Fidelis Bittencourt ◽  
Edson S. Figueiredo ◽  
Pedro Fusieger




2017 ◽  
Vol 53 (2) ◽  
pp. 205-216 ◽  
Author(s):  
José Carlos Díaz-Ramos ◽  
Miguel Domínguez-Vázquez ◽  
Cristina Vidal-Castiñeira


2015 ◽  
Vol 27 (4) ◽  
Author(s):  
Walter D. Freyn

AbstractWe introduce a new class of submanifolds of co-Banach type in tame Fréchet manifolds and construct tame Fréchet submanifolds as inverse images of regular values of certain tame maps. Our method furnishes an easy way to construct tame Fréchet manifolds. The results presented are key ingredients in the construction of affine Kac–Moody symmetric spaces; they have also important applications in the study of isoparametric submanifolds in tame Fréchet spaces.



Sign in / Sign up

Export Citation Format

Share Document