Integrated acoustic echo and noise suppression in modulation domain

2016 ◽  
Vol 19 (3) ◽  
pp. 611-621 ◽  
Author(s):  
E. P. Jayakumar ◽  
P. V. Muhammed Shifas ◽  
P. S. Sathidevi
2021 ◽  
Author(s):  
Muhammed Shifas PV ◽  
Jayakumar EP ◽  
Sathidevi PS

<div><div><div><p>Quality degradation of near-end speech in mobile communication or hands free devices is mainly due to acoustic echoes and background noises. The received far-end speech gets reflected from the obstacles present in the surroundings creating acoustic echo. All other disturbances from the near-end environment are considered as background noises. A novel acoustic echo suppression scheme using speech uncertainty in modulation domain (MD) is proposed in this paper. State of the art acoustic echo suppression systems are based on either time domain or frequency domain analysis. In recent times, the modulation domain analysis is popularly used in speech processing, as it captures the human perceptual properties. Modulation domain provides the temporal variation of the acoustic magnitude spectra which acts as an information bearing signal. In this paper, a new method is developed and implemented to model the echo path and estimate the echo in modulation domain. Echo cancellation is done effectively by manipulating the modulation spectrum and employing speech uncertainty. In this method, the microphone input is modelled as a binary hypothesis process and the gain function is modified accordingly. The proposed method shows better performance as compared to other competitive methods for acoustic echo suppression with no audible degradation in the near-end speech. <br></p></div></div></div>


2021 ◽  
Author(s):  
Ernst Seidel ◽  
Jan Franzen ◽  
Maximilian Strake ◽  
Tim Fingscheidt

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Li Cheng ◽  
Chang Jinfeng ◽  
Liu Zhao ◽  
Fan Shangchun ◽  
Ding Tianhuai

A new method of wireless data telemetry used by oil industry uses compressional acoustic waves to transmit downhole information from the bottom hole to the surface. Unfortunately, acoustic echoes and drilling vibration noises in periodic drillstring are a major issue in transmission performance. A combined acoustic echo and noise suppression method based on wave motion characteristic in drillstring is adopted to enhance an upward-going transmitted acoustic signal. The presented scheme consists of a primary acoustic echo canceller using an array of two accelerometers for dealing with the downward-going noises and a secondary acoustic insulation structure for restraining the upward-going vibration noises. Furthermore, the secondary acoustic insulation structure exhibits a banded and dispersive spectral structure because of periodic groove configuration. By using a finite-differential algorithm for the one-dimensional propagation of longitudinal waves, acoustic receiving characteristics of transmitted signals are simulated with additive Gaussian noise in a periodic pipe structure of limited length to investigate the effects on transmission performance optimization. The results reveal that the proposed scheme can achieve a much lower error bit ratio over a specified acoustic isolation frequency range with a 30–40 dB reduction in the average noise level compared to traditional single-receiver scheme.


2021 ◽  
Author(s):  
Muhammed PV Shifas ◽  
Jayakumar EP ◽  
Sathidevi PS

<div><div><div><p>Quality degradation of near-end speech in mobile communication or hands free devices is mainly due to acoustic echoes and background noises. The received far-end speech gets reflected from the obstacles present in the surroundings creating acoustic echo. All other disturbances from the near-end environment are considered as background noises. A novel acoustic echo suppression scheme using speech uncertainty in modulation domain (MD) is proposed in this paper. State of the art acoustic echo suppression systems are based on either time domain or frequency domain analysis. In recent times, the modulation domain analysis is popularly used in speech processing, as it captures the human perceptual properties. Modulation domain provides the temporal variation of the acoustic magnitude spectra which acts as an information bearing signal. In this paper, a new method is developed and implemented to model the echo path and estimate the echo in modulation domain. Echo cancellation is done effectively by manipulating the modulation spectrum and employing speech uncertainty. In this method, the microphone input is modelled as a binary hypothesis process and the gain function is modified accordingly. The proposed method shows better performance as compared to other competitive methods for acoustic echo suppression with no audible degradation in the near-end speech. <br></p></div></div></div>


2021 ◽  
Author(s):  
Muhammed Shifas PV ◽  
Jayakumar EP ◽  
Sathidevi PS

<div><div><div><p>Quality degradation of near-end speech in mobile communication or hands free devices is mainly due to acoustic echoes and background noises. The received far-end speech gets reflected from the obstacles present in the surroundings creating acoustic echo. All other disturbances from the near-end environment are considered as background noises. A novel acoustic echo suppression scheme using speech uncertainty in modulation domain (MD) is proposed in this paper. State of the art acoustic echo suppression systems are based on either time domain or frequency domain analysis. In recent times, the modulation domain analysis is popularly used in speech processing, as it captures the human perceptual properties. Modulation domain provides the temporal variation of the acoustic magnitude spectra which acts as an information bearing signal. In this paper, a new method is developed and implemented to model the echo path and estimate the echo in modulation domain. Echo cancellation is done effectively by manipulating the modulation spectrum and employing speech uncertainty. In this method, the microphone input is modelled as a binary hypothesis process and the gain function is modified accordingly. The proposed method shows better performance as compared to other competitive methods for acoustic echo suppression with no audible degradation in the near-end speech. <br></p></div></div></div>


2021 ◽  
Author(s):  
Muhammed Shifas PV ◽  
Jayakumar EP ◽  
Sathidevi PS

<div><div><div><p>Quality degradation of near end speech in mobile communication or hands free devices is mainly due to acoustic echoes and background noises. The received far-end speech gets reflected from the obstacles present in the surroundings creating acoustic echo. All other disturbances from the near end environment are considered as background noises. A novel acoustic echo suppression scheme using speech uncertainty in modulation domain (MD) is proposed in this paper. State of the art acoustic echo suppression systems are based on either time domain or frequency domain analysis. In recent times, the modulation domain analysis is popularly used in speech processing, as it captures the human perceptual properties. Modulation domain provides the temporal variation of the acoustic magnitude spectra which acts as an information bearing signal. In this paper, a new method is developed and implemented to model the echo path and estimate the echo in modulation domain. Echo cancellation is done effectively by manipulating the modulation spectrum and employing speech uncertainty. In this method, the microphone input is modelled as a binary hypothesis process and the gain function is modified accordingly. The proposed method shows better performance as compared to other competitive methods for acoustic echo suppression with no audible degradation in the near end speech.</p><p><br></p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document