AbstractIn this paper, we propose a random noise suppression and super-resolution reconstruction algorithm for seismic profiles based on Generative Adversarial Networks, in anticipation of reducing the influence of random noise and low resolution on seismic profiles. Firstly, the algorithm used the residual learning strategy to construct a de-noising subnet to accurate separate the interference noise on the basis of protecting the effective signal. Furthermore, it iterated the back-projection unit to complete the reconstruction of the high-resolution seismic sections image, while responsed sampling error to enhance the super-resolution performance of the algorithm. For seismic data characteristics, designed the discriminator to be a fully convolutional neural network, used a larger convolution kernels to extract data features and continuously strengthened the supervision of the generator performance optimization during the training process. The results on the synthetic data and the actual data indicated that the algorithm could improve the quality of seismic cross-section, make ideal signal-to-noise ratio and further improve the resolution of the reconstructed cross-sectional image. Besides, the observations of geological structures such as fractures were also clearer.