Phenomenological Modeling of Thermomagnetic Properties and Magnetocaloric Effect of (Mn$$_{0.6}$$Fe$$_{0.4}$$)NiSi$$_{1-x}$$Al$$_{x}$$ ($$x = 0.07$$ and 0.08) Alloys

Author(s):  
Soumyadipta Pal ◽  
Subarna Datta
2019 ◽  
Vol 473 ◽  
pp. 324-330
Author(s):  
Ahmed Nagy ◽  
Tarek Hammad ◽  
Sherif Yehia ◽  
Samy H. Aly

2018 ◽  
Vol 1 (1) ◽  
pp. 268-278
Author(s):  
Ahmed Nagy ◽  
Samy H. Aly ◽  
Sherif Yehia ◽  
Tareq Hammad

We present a mean-field analysis, using the two-sublattice model, for the thermomagnetic and magnetocaloric properties of the R2Fe17C compounds, where R=Dy, Nd, Tb, Gd, Pr, Ho, Er and C is carbon.   The dependence of magnetization, magnetic heat capacity, magnetic entropy and isothermal entropy change ∆Sm, are calculated for magnetic fields up to 5T and for temperatures up to 700 K . Direct magnetocaloric effect is present for all compounds with maximum ∆Sm between 6.13-10.95 J/K. mole for an applied field change of 5T. It is found that Pr2Fe17C compound has the highest  ∆Sm of 10.95 J/K. mole at ∆H=5T and Tc=375 K. The inverse MCE is found in ferrimagnetic compounds, e.g. Gd2Fe17C, with ∆Sm= J/K mol at critical temperature Tc=623K and ∆Sm=  J/K mol at Neel temperature TN=136 K.  The calculated Arrott plots confirmed that the magnetic phase transitions in these compounds are of second order. The mean-field model proves its suitability for calculating the properties of the compounds under study.


AIP Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 035010 ◽  
Author(s):  
Suok-Min Na ◽  
Paul K. Lambert ◽  
Hyunsoo Kim ◽  
Johnpierre Paglione ◽  
Nicholas J. Jones

2018 ◽  
Vol 1 (1) ◽  
pp. 268-278
Author(s):  
Ahmed Nagy ◽  
Samy H. Aly ◽  
Sherif Yehia ◽  
Tareq Hammad

We present a mean-field analysis, using the two-sublattice model, for the thermomagnetic and magnetocaloric properties of the R2Fe17C compounds, where R=Dy, Nd, Tb, Gd, Pr, Ho, Er and C is carbon.   The dependence of magnetization, magnetic heat capacity, magnetic entropy and isothermal entropy change ∆Sm, are calculated for magnetic fields up to 5T and for temperatures up to 700 K . Direct magnetocaloric effect is present for all compounds with maximum ∆Sm between 6.13-10.95 J/K. mole for an applied field change of 5T. It is found that Pr2Fe17C compound has the highest  ∆Sm of 10.95 J/K. mole at ∆H=5T and Tc=375 K. The inverse MCE is found in ferrimagnetic compounds, e.g. Gd2Fe17C, with ∆Sm= J/K mol at critical temperature Tc=623K and ∆Sm=  J/K mol at Neel temperature TN=136 K.  The calculated Arrott plots confirmed that the magnetic phase transitions in these compounds are of second order. The mean-field model proves its suitability for calculating the properties of the compounds under study.


2020 ◽  
Vol 12 (1) ◽  
pp. 01018-1-01018-4
Author(s):  
Anna Kosogor ◽  
◽  
Serafima I. Palamarchuk ◽  
Victor A. Lvov ◽  
◽  
...  

2020 ◽  
Author(s):  
Jia-Wang Xu ◽  
Xinqi Zheng ◽  
Shu-Xian Yang ◽  
L. Xi ◽  
J. Y. Zhang ◽  
...  

2017 ◽  
Vol 702 ◽  
pp. 546-550 ◽  
Author(s):  
Yikun Zhang ◽  
Dan Guo ◽  
Yang Yang ◽  
Shuhua Geng ◽  
Xi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document