Fractional Factorials and Prime Numbers (A Remark on the Paper “On Prime Values of Some Quadratic Polynomials”)

2016 ◽  
Vol 217 (1) ◽  
pp. 1-2
Author(s):  
A. N. Andrianov
1956 ◽  
Vol 40 (333) ◽  
pp. 201-202
Author(s):  
J. P. McCarthy

1956 ◽  
Vol 40 (333) ◽  
pp. 201
Author(s):  
J. P. McCarthy

2004 ◽  
Vol 41 (3) ◽  
pp. 309-324
Author(s):  
C. Bauer
Keyword(s):  

Let pi, 2 ≤ i ≤ 5 be prime numbers. It is proved that all but ≪ x23027/23040+ε even integers N ≤ x can be written as N = p21 + p32 + p43 + p45.


2011 ◽  
Vol 201 ◽  
pp. 23-43 ◽  
Author(s):  
Giovanni Bassanelli ◽  
François Berteloot

AbstractIn the space of degreedpolynomials, the hypersurfaces defined by the existence of a cycle of periodnand multipliereiθare known to be contained in the bifurcation locus. We prove that these hypersurfaces equidistribute the bifurcation current. This is a new result, even for the space of quadratic polynomials.


1977 ◽  
Vol 1 (S2) ◽  
pp. 7-19 ◽  
Author(s):  
Don Zagier
Keyword(s):  

2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


2008 ◽  
Vol 15 (1) ◽  
pp. 189-194
Author(s):  
Ahmad Zireh

Abstract We use a commutative generalization of complex numbers called bicomplex numbers to introduce the bicomplex dynamics of polynomials of type 𝐸𝑑, 𝑓𝑐(𝑤) = 𝑤(𝑤 + 𝑐)𝑑. Rochon [Fractals 8: 355–368, 2000] proved that the Mandelbrot set of quadratic polynomials in bicomplex numbers of the form 𝑤2 + 𝑐 is connected. We prove that our generalized Mandelbrot set of polynomials of type 𝐸𝑑, 𝑓𝑐(𝑤) = 𝑤(𝑤 + 𝑐)𝑑, is connected.


Sign in / Sign up

Export Citation Format

Share Document