support vector
Recently Published Documents


TOTAL DOCUMENTS

43704
(FIVE YEARS 22193)

H-INDEX

210
(FIVE YEARS 63)

2022 ◽  
Vol 22 (3) ◽  
pp. 1-21
Author(s):  
Tongguang Ni ◽  
Jiaqun Zhu ◽  
Jia Qu ◽  
Jing Xue

Edge/fog computing works at the local area network level or devices connected to the sensor or the gateway close to the sensor. These nodes are located in different degrees of proximity to the user, while the data processing and storage are distributed among multiple nodes. In healthcare applications in the Internet of things, when data is transmitted through insecure channels, its privacy and security are the main issues. In recent years, learning from label proportion methods, represented by inverse calibration (InvCal) method, have tried to predict the class label based on class label proportions in certain groups. For privacy protection, the class label of the sample is often sensitive and invisible. As a compromise, only the proportion of class labels in certain groups can be used in these methods. However, due to their weak labeling scheme, their classification performance is often unsatisfactory. In this article, a labeling privacy protection support vector machine using privileged information, called LPP-SVM-PI, is proposed to promote the accuracy of the classifier in infectious disease diagnosis. Based on the framework of the InvCal method, besides using the proportion information of the class label, the idea of learning using privileged information is also introduced to capture the additional information of groups. The slack variables in LPP-SVM-PI are represented as correcting function and projected into the correcting space so that the hidden information of training samples in groups is captured by relaxing the constraints of the classification model. The solution of LPP-SVM-PI can be transformed into a classic quadratic programming problem. The experimental dataset is collected from the Coronavirus disease 2019 (COVID-19) transcription polymerase chain reaction at Hospital Israelita Albert Einstein in Brazil. In the experiment, LPP-SVM-PI is efficiently applied for COVID-19 diagnosis.


Author(s):  
Warih Maharani ◽  
Veronikha Effendy

<span lang="EN-US">The popularity of social media has drawn the attention of researchers who have conducted cross-disciplinary studies examining the relationship between personality traits and behavior on social media. Most current work focuses on personality prediction analysis of English texts, but Indonesian has received scant attention. Therefore, this research aims to predict user’s personalities based on Indonesian text from social media using machine learning techniques. This paper evaluates several machine learning techniques, including <a name="_Hlk87278444"></a>naive Bayes (NB), K-nearest neighbors (KNN), and support vector machine (SVM), based on semantic features including emotion, sentiment, and publicly available Twitter profile. We predict the personality based on the big five personality model, the most appropriate model for predicting user personality in social media. We examine the relationships between the semantic features and the Big Five personality dimensions. The experimental results indicate that the Big Five personality exhibit distinct emotional, sentimental, and social characteristics and that SVM outperformed NB and KNN for Indonesian. In addition, we observe several terms in Indonesian that specifically refer to each personality type, each of which has distinct emotional, sentimental, and social features.</span>


2022 ◽  
Vol 16 (3) ◽  
pp. 1-37
Author(s):  
Robert A. Sowah ◽  
Bernard Kuditchar ◽  
Godfrey A. Mills ◽  
Amevi Acakpovi ◽  
Raphael A. Twum ◽  
...  

Class imbalance problem is prevalent in many real-world domains. It has become an active area of research. In binary classification problems, imbalance learning refers to learning from a dataset with a high degree of skewness to the negative class. This phenomenon causes classification algorithms to perform woefully when predicting positive classes with new examples. Data resampling, which involves manipulating the training data before applying standard classification techniques, is among the most commonly used techniques to deal with the class imbalance problem. This article presents a new hybrid sampling technique that improves the overall performance of classification algorithms for solving the class imbalance problem significantly. The proposed method called the Hybrid Cluster-Based Undersampling Technique (HCBST) uses a combination of the cluster undersampling technique to under-sample the majority instances and an oversampling technique derived from Sigma Nearest Oversampling based on Convex Combination, to oversample the minority instances to solve the class imbalance problem with a high degree of accuracy and reliability. The performance of the proposed algorithm was tested using 11 datasets from the National Aeronautics and Space Administration Metric Data Program data repository and University of California Irvine Machine Learning data repository with varying degrees of imbalance. Results were compared with classification algorithms such as the K-nearest neighbours, support vector machines, decision tree, random forest, neural network, AdaBoost, naïve Bayes, and quadratic discriminant analysis. Tests results revealed that for the same datasets, the HCBST performed better with average performances of 0.73, 0.67, and 0.35 in terms of performance measures of area under curve, geometric mean, and Matthews Correlation Coefficient, respectively, across all the classifiers used for this study. The HCBST has the potential of improving the performance of the class imbalance problem, which by extension, will improve on the various applications that rely on the concept for a solution.


Author(s):  
Tamilarasi Suresh ◽  
Tsehay Admassu Assegie ◽  
Subhashni Rajkumar ◽  
Napa Komal Kumar

Heart disease is one of the most widely spreading and deadliest diseases across the world. In this study, we have proposed hybrid model for heart disease prediction by employing random forest and support vector machine. With random forest, iterative feature elimination is carried out to select heart disease features that improves predictive outcome of support vector machine for heart disease prediction. Experiment is conducted on the proposed model using test set and the experimental result evidently appears to prove that the performance of the proposed hybrid model is better as compared to an individual random forest and support vector machine. Overall, we have developed more accurate and computationally efficient model for heart disease prediction with accuracy of 98.3%. Moreover, experiment is conducted to analyze the effect of regularization parameter (C) and gamma on the performance of support vector machine. The experimental result evidently reveals that support vector machine is very sensitive to C and gamma.


2022 ◽  
Vol 3 (2) ◽  
pp. 1-27
Author(s):  
Djordje Slijepcevic ◽  
Fabian Horst ◽  
Sebastian Lapuschkin ◽  
Brian Horsak ◽  
Anna-Maria Raberger ◽  
...  

Machine Learning (ML) is increasingly used to support decision-making in the healthcare sector. While ML approaches provide promising results with regard to their classification performance, most share a central limitation, their black-box character. This article investigates the usefulness of Explainable Artificial Intelligence (XAI) methods to increase transparency in automated clinical gait classification based on time series. For this purpose, predictions of state-of-the-art classification methods are explained with a XAI method called Layer-wise Relevance Propagation (LRP). Our main contribution is an approach that explains class-specific characteristics learned by ML models that are trained for gait classification. We investigate several gait classification tasks and employ different classification methods, i.e., Convolutional Neural Network, Support Vector Machine, and Multi-layer Perceptron. We propose to evaluate the obtained explanations with two complementary approaches: a statistical analysis of the underlying data using Statistical Parametric Mapping and a qualitative evaluation by two clinical experts. A gait dataset comprising ground reaction force measurements from 132 patients with different lower-body gait disorders and 62 healthy controls is utilized. Our experiments show that explanations obtained by LRP exhibit promising statistical properties concerning inter-class discriminativity and are also in line with clinically relevant biomechanical gait characteristics.


2022 ◽  
Vol 11 (3) ◽  
pp. 1-10
Author(s):  
Sudhakar Sengan ◽  
Osamah Ibrahim Khalaf ◽  
Ganga Rama Koteswara Rao ◽  
Dilip Kumar Sharma ◽  
Amarendra K. ◽  
...  

An ad hoc structure is self-organizing, self-forming, and system-free, with no nearby associations. One of the significant limits we must focus on in frameworks is leading. As for directions, we can send the packet or communications from the sender to the recipient node. AODV Routing Protocol, a short display that will make the tutorial available on demand. Machine Learning (ML) based IDS must be integrated and perfected to support the detection of vulnerabilities and enable frameworks to make intrusion decisions while ML is about their mobile context. This paper considers the combined effect of stooped difficulties along the way, problems at the medium get-right-of-area to impact layer, or pack disasters triggered by the remote control going off route. The AODV as the Routing MANET protocol is used in this work, and the process is designed and evaluated using Support Vector Machine (SVM) to detect the malicious network nodes.


Author(s):  
Subhra Swetanisha ◽  
Amiya Ranjan Panda ◽  
Dayal Kumar Behera

<p>An ensemble model has been proposed in this work by combining the extreme gradient boosting classification (XGBoost) model with support vector machine (SVM) for land use and land cover classification (LULCC). We have used the multispectral Landsat-8 operational land imager sensor (OLI) data with six spectral bands in the electromagnetic spectrum (EM). The area of study is the administrative boundary of the twin cities of Odisha. Data collected in 2020 is classified into seven land use classes/labels: river, canal, pond, forest, urban, agricultural land, and sand. Comparative assessments of the results of ten machine learning models are accomplished by computing the overall accuracy, kappa coefficient, producer accuracy and user accuracy. An ensemble classifier model makes the classification more precise than the other state-of-the-art machine learning classifiers.</p>


Author(s):  
Jesmeen Mohd Zebaral Hoque ◽  
Jakir Hossen ◽  
Shohel Sayeed ◽  
Chy. Mohammed Tawsif K. ◽  
Jaya Ganesan ◽  
...  

Recently, the industry of healthcare started generating a large volume of datasets. If hospitals can employ the data, they could easily predict the outcomes and provide better treatments at early stages with low cost. Here, data analytics (DA) was used to make correct decisions through proper analysis and prediction. However, inappropriate data may lead to flawed analysis and thus yield unacceptable conclusions. Hence, transforming the improper data from the entire data set into useful data is essential. Machine learning (ML) technique was used to overcome the issues due to incomplete data. A new architecture, automatic missing value imputation (AMVI) was developed to predict missing values in the dataset, including data sampling and feature selection. Four prediction models (i.e., logistic regression, support vector machine (SVM), AdaBoost, and random forest algorithms) were selected from the well-known classification. The complete AMVI architecture performance was evaluated using a structured data set obtained from the UCI repository. Accuracy of around 90% was achieved. It was also confirmed from cross-validation that the trained ML model is suitable and not over-fitted. This trained model is developed based on the dataset, which is not dependent on a specific environment. It will train and obtain the outperformed model depending on the data available.


Diagnosis of COVID-19 pneumonia using patients’ chest X-Ray images is new but yet important task in the field of medicine. Researchers from different parts of the globe have developed many deep learning models to classify COVID-19. The performance of feature extraction and classifier plays a vital role in the recognizing the different patterns in the image. The pivotal process is the extraction of optimum features from the chest X-Ray images. The main goal of this study is to design an efficient hybrid algorithm that integrates the robustness of MobileNet (using transfer learning approach) to extract features and Support Vector Machine (SVM) to classify COVID-19. Experiments were conducted to test the proposed algorithm and it was found to have a high classification accuracy of 95%.


Author(s):  
Atallah Mahmoud Al-Shatnawi ◽  
Faisal Al-Saqqar ◽  
Alireza Souri

This paper is aimed at improving the performance of the word recognition system (WRS) of handwritten Arabic text by extracting features in the frequency domain using the Stationary Wavelet Transform (SWT) method using machine learning, which is a wavelet transform approach created to compensate for the absence of translation invariance in the  Discrete Wavelets Transform (DWT) method. The proposed SWT-WRS of Arabic handwritten text consists of three main processes: word normalization, feature extraction based on SWT, and recognition. The proposed SWT-WRS based on the SWT method is evaluated on the IFN/ENIT database applying the Gaussian, linear, and polynomial support vector machine, the k-nearest neighbors, and ANN classifiers. ANN performance was assessed by applying the Bayesian Regularization (BR) and Levenberg-Marquardt (LM) training methods. Numerous wavelet transform (WT) families are applied, and the results prove that level 19 of the Daubechies family is the best WT family for the proposed SWT-WRS. The results also confirm the effectiveness of the proposed SWT-WRS in improving the performance of handwritten Arabic word recognition using machine learning. Therefore, the suggested SWT-WRS overcomes the lack of translation invariance in the DWT method by eliminating the up-and-down samplers from the proposed machine learning method.


Sign in / Sign up

Export Citation Format

Share Document