Fundamental Solution of the Cauchy Problem for Degenerate Parabolic Kolmogorov-Type Equations of Any Order

2021 ◽  
Vol 258 (4) ◽  
pp. 369-391
Author(s):  
S. D. Ivasyshen ◽  
І. P. Medynsky
2014 ◽  
Vol 6 (2) ◽  
pp. 320-328
Author(s):  
H.P. Malytska ◽  
I.V. Burtnyak

The paper found the explicit form of the fundamental solution of  Cauchy problem for the equation of Kolmogorov type that has a finite number  groups of spatial variables which are degenerate parabolic.


2021 ◽  
Vol 9 (1) ◽  
pp. 189-199
Author(s):  
H. Pasichnyk ◽  
S. Ivasyshen

The nonhomogeneous model Kolmogorov type ultraparabolic equation with infinitely increasing coefficients at the lowest derivatives as |x| → ∞ and degenerations for t = 0 is considered in the paper. Theorems on the integral representation of solutions of the equation are proved. The representation is written with the use of Poisson integral and the volume potential generated by the fundamental solution of the Cauchy problem. The considered solutions, as functions of x, could infinitely increase as |x| → ∞, and could behave in a certain way as t → 0, depending on the type of the degeneration of the equation at t = 0. Note that in the case of very strong degeneration, the solutions, as functions of x, are bounded. These results could be used to establish the correct solvability of the considered equation with the classical initial condition in the case of weak degeneration of the equation at t = 0, weight initial condition or without the initial condition if the degeneration is strong.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Sign in / Sign up

Export Citation Format

Share Document