degenerate parabolic
Recently Published Documents


TOTAL DOCUMENTS

1053
(FIVE YEARS 139)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 40 ◽  
pp. 1-19
Author(s):  
Hamid EL Bahja

In this paper, we discuss a class of degenerate parabolic equations with variable exponents. By  using the Steklov average and Young's inequality, we establish energy and logarithmicestimates for solutions to these equations. Then based on the intrinsic scaling method, we provethat local weak solutions are locally continuous.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pierre Bousquet ◽  
Lorenzo Brasco ◽  
Chiara Leone ◽  
Anna Verde

Abstract We consider a quasilinear degenerate parabolic equation driven by the orthotropic p-Laplacian. We prove that local weak solutions are locally Lipschitz continuous in the spatial variable, uniformly in time.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Huashui Zhan

AbstractThe initial-boundary value problem of a degenerate parabolic equation arising from double phase convection is considered. Let $a(x)$ a ( x ) and $b(x)$ b ( x ) be the diffusion coefficients corresponding to the double phase respectively. In general, it is assumed that $a(x)+b(x)>0$ a ( x ) + b ( x ) > 0 , $x\in \overline{\Omega }$ x ∈ Ω ‾ and the boundary value condition should be imposed. In this paper, the condition $a(x)+b(x)>0$ a ( x ) + b ( x ) > 0 , $x\in \overline{\Omega }$ x ∈ Ω ‾ is weakened, and sometimes the boundary value condition is not necessary. The existence of a weak solution u is proved by parabolically regularized method, and $u_{t}\in L^{2}(Q_{T})$ u t ∈ L 2 ( Q T ) is shown. The stability of weak solutions is studied according to the different integrable conditions of $a(x)$ a ( x ) and $b(x)$ b ( x ) . To ensure the well-posedness of weak solutions, the classical trace is generalized, and that the homogeneous boundary value condition can be replaced by $a(x)b(x)|_{x\in \partial \Omega }=0$ a ( x ) b ( x ) | x ∈ ∂ Ω = 0 is found for the first time.


Sign in / Sign up

Export Citation Format

Share Document