Moment Formulas for Multitype Continuous State and Continuous Time Branching Process with Immigration

2015 ◽  
Vol 29 (3) ◽  
pp. 958-995 ◽  
Author(s):  
Mátyás Barczy ◽  
Zenghu Li ◽  
Gyula Pap
2016 ◽  
Vol 16 (04) ◽  
pp. 1650008 ◽  
Author(s):  
Mátyás Barczy ◽  
Gyula Pap

Under natural assumptions, a Feller type diffusion approximation is derived for critical, irreducible multi-type continuous state and continuous time branching processes with immigration. Namely, it is proved that a sequence of appropriately scaled random step functions formed from a critical, irreducible multi-type continuous state and continuous time branching process with immigration converges weakly towards a squared Bessel process supported by a ray determined by the Perron vector of a matrix related to the branching mechanism of the branching process in question.


2021 ◽  
Vol 53 (4) ◽  
pp. 1023-1060
Author(s):  
Mátyás Barczy ◽  
Sandra Palau ◽  
Gyula Pap

AbstractUnder a fourth-order moment condition on the branching and a second-order moment condition on the immigration mechanisms, we show that an appropriately scaled projection of a supercritical and irreducible continuous-state and continuous-time branching process with immigration on certain left non-Perron eigenvectors of the branching mean matrix is asymptotically mixed normal. With an appropriate random scaling, under some conditional probability measure, we prove asymptotic normality as well. In the case of a non-trivial process, under a first-order moment condition on the immigration mechanism, we also prove the convergence of the relative frequencies of distinct types of individuals on a suitable event; for instance, if the immigration mechanism does not vanish, then this convergence holds almost surely.


2016 ◽  
Vol 53 (4) ◽  
pp. 1166-1177 ◽  
Author(s):  
Xin He ◽  
Zenghu Li

Abstract We study the distributional properties of jumps in a continuous-state branching process with immigration. In particular, a representation is given for the distribution of the first jump time of the process with jump size in a given Borel set. From this result we derive a characterization for the distribution of the local maximal jump of the process. The equivalence of this distribution and the total Lévy measure is then studied. For the continuous-state branching process without immigration, we also study similar problems for its global maximal jump.


1994 ◽  
Vol 31 (04) ◽  
pp. 897-910
Author(s):  
P. K. Pollett

In [14] a necessary and sufficient condition was obtained for there to exist uniquely a Q-process with a specified invariant measure, under the assumption that Q is a stable, conservative, single-exit matrix. The purpose of this note is to demonstrate that, for an arbitrary stable and conservative q-matrix, the same condition suffices for the existence of a suitable Q-process, but that this process might not be unique. A range of examples is considered, including pure-birth processes, a birth process with catastrophes, birth-death processes and the Markov branching process with immigration.


2019 ◽  
Vol 56 (4) ◽  
pp. 1122-1150 ◽  
Author(s):  
D. Fekete ◽  
J. Fontbona ◽  
A. E. Kyprianou

AbstractIt is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs (non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.


1994 ◽  
Vol 31 (4) ◽  
pp. 897-910 ◽  
Author(s):  
P. K. Pollett

In [14] a necessary and sufficient condition was obtained for there to exist uniquely a Q-process with a specified invariant measure, under the assumption that Q is a stable, conservative, single-exit matrix. The purpose of this note is to demonstrate that, for an arbitrary stable and conservative q-matrix, the same condition suffices for the existence of a suitable Q-process, but that this process might not be unique. A range of examples is considered, including pure-birth processes, a birth process with catastrophes, birth-death processes and the Markov branching process with immigration.


1981 ◽  
Vol 13 (3) ◽  
pp. 498-509 ◽  
Author(s):  
B. R. Bhat ◽  
S. R. Adke

This paper establishes the strong consistency of the maximum likelihood estimators of the parameters of discrete- and continuous-time Markov branching processes with immigration. The asymptotic distributions of the maximum likelihood estimators of the parameters of a Galton–Watson branching process with immigration are also obtained.


1981 ◽  
Vol 13 (03) ◽  
pp. 498-509 ◽  
Author(s):  
B. R. Bhat ◽  
S. R. Adke

This paper establishes the strong consistency of the maximum likelihood estimators of the parameters of discrete- and continuous-time Markov branching processes with immigration. The asymptotic distributions of the maximum likelihood estimators of the parameters of a Galton–Watson branching process with immigration are also obtained.


Sign in / Sign up

Export Citation Format

Share Document