maximum likelihood
Recently Published Documents





Rajesh Singh ◽  
Pritee Singh ◽  
Kailash Kale

Reliability is an essentially important characteristic of software. The reliability of software has been assessed by considering Poisson Type occurrence of software failures and the failure intensity of one parameter say (η_1 ) Rayleigh class. Here, it is assumed that the software contains fixed number of inherent faults say (η_0 ). The scale parameter of Rayleigh density (η_1 ) and fixed number of inherent faults contained in software are the parameters of interest. The failure intensity and mean failure function of this Poisson Type Rayleigh Class (PTRC) Software Reliability Growth Model (SRGM) have been studied. The estimates of above parameters can be obtained by using maximum likelihood method. Bayesian technique has been used to about estimates of η_0 and η_1 if prior knowledge about these parameters is available. The prior knowledge about these parameters is considered in the form of non- informative priors for both the parameters. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies under squared error loss. The Monte Carlo simulation technique is used for calculating risk efficiencies. It is seen that both the proposed Bayes estimators can be preferred over corresponding MLEs for the proper choice of the values of execution time.

Yihong Qiao ◽  
Wenhao Gui

With the popularity of step-stress accelerated life testing, researchers are exploring more possibilities for models that relate the life distributions under different stress levels. Cumulative risk model assumes that the effects of stress changes have a lag period before they are fully observed, which guarantees the continuity of the hazard rate function. This paper studies the cumulative risk model for Lomax distribution with step-stress experiments. For maximum likelihood estimation, Newton-Rapson method is adopted to get point estimates. Meanwhile, the asymptotic normality of the maximum likelihood estimator is used to obtain asymptotic confidence intervals. For Bayesian estimation, point estimates and highest posterior density credible intervals under squared error loss function with informative prior and non-informative prior are derived using Metropolis-Hastings method and Metropolis-Hastings within Gibbs algorithm. To evaluate the effects of stress change time and the length of lag period, as well as the performance of different methods, numerical simulations are conducted. Then a real nanocrystalline data set is analyzed.

2022 ◽  
Lenore Pipes ◽  
Zihao Chen ◽  
Svetlana Afanaseva ◽  
Rasmus Nielsen

Wastewater surveillance has become essential for monitoring the spread of SARS-CoV-2. The quantification of SARS-CoV-2 RNA in wastewater correlates with the Covid-19 caseload in a community. However, estimating the proportions of different SARS-CoV-2 strains has remained technically difficult. We present a method for estimating the relative proportions of SARS-CoV-2 strains from wastewater samples. The method uses an initial step to remove unlikely strains, imputation of missing nucleotides using the global SARS-CoV-2 phylogeny, and an Expectation-Maximization (EM) algorithm for obtaining maximum likelihood estimates of the proportions of different strains in a sample. Using simulations with a reference database of >3 million SARS-CoV-2 genomes, we show that the estimated proportions accurately reflect the true proportions given sufficiently high sequencing depth and that the phylogenetic imputation is highly accurate and substantially improves the reference database.

2022 ◽  
Vol 105 (2) ◽  
Arianna I. Renzini ◽  
Joseph D. Romano ◽  
Carlo R. Contaldi ◽  
Neil J. Cornish

2022 ◽  
Vol 15 (1) ◽  
pp. 185-203
Frithjof Ehlers ◽  
Thomas Flament ◽  
Alain Dabas ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  

Abstract. The European Space Agency (ESA) Earth Explorer Mission Aeolus was launched in August 2018, carrying the first Doppler wind lidar in space. Its primary payload, the Atmospheric LAser Doppler INstrument (ALADIN), is an ultraviolet (UV) high-spectral-resolution lidar (HSRL) measuring atmospheric backscatter from air molecules and particles in two separate channels. The primary mission product is globally distributed line-of-sight wind profile observations in the troposphere and lower stratosphere. Atmospheric optical properties are provided as a spin-off product. Being an HSRL, Aeolus is able to independently measure the particle extinction coefficients, co-polarized particle backscatter coefficients and the co-polarized lidar ratio (the cross-polarized return signal is not measured). This way, the retrieval is independent of a priori lidar ratio information. The optical properties are retrieved using the standard correct algorithm (SCA), which is an algebraic inversion scheme and therefore sensitive to measurement noise. In this work, we reformulate the SCA into a physically constrained maximum-likelihood estimation (MLE) problem and demonstrate a predominantly positive impact and considerable noise suppression capabilities. These improvements originate from the use of all available information by the MLE in conjunction with the expected physical bounds concerning positivity and the expected range of the lidar ratio. To consolidate and to illustrate the improvements, the new MLE algorithm is evaluated against the SCA on end-to-end simulations of two homogeneous scenes and for real Aeolus data collocated with measurements by a ground-based lidar and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The largest improvements were seen in the retrieval precision of the extinction coefficients and lidar ratio ranging up to 1 order of magnitude or more in some cases due to effective noise dampening. In real data cases, the increased precision of MLE with respect to the SCA is demonstrated by increased horizontal homogeneity and better agreement with the ground truth, though proper uncertainty estimation of MLE results is challenged by the constraints, and the accuracy of MLE and SCA retrievals can depend on calibration errors, which have not been considered.

2022 ◽  
Vol 19 (1) ◽  
Ayush Tripathi ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

The maximum likelihood estimation of the unknown parameters of inverse Rayleigh and exponential distributions are discussed based on lower and upper records. The aim is to study the effect of the type of records on the behavior of the corresponding estimators. Mean squared errors are calculated through simulation to study the behavior of the estimators. The results shall be of interest to those situations where the data can be obtained in the form of either of the two types of records and the experimenter must decide between these two for estimation of the unknown parameters of the distribution.

Sign in / Sign up

Export Citation Format

Share Document