scholarly journals Bi-objective design-for-control of water distribution networks with global bounds

Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.

Author(s):  
Brian Young

AbstractA three stage procedure for the analysis and least-cost design of looped water distribution networks is considered in this paper. The first stage detects spanning trees and identifies the true global optimum for the system. The second stage determines hydraulically feasible pipe flows for the network by the numerical solution of a set of non-linear simultaneous equations and shows that these solutions are contained within closed convex polygonal regions in the solution space bounded by singularities resulting from zero flows in individual pipes. Ideal pipe diameters, consistent with the pipe flows and the constant velocity constraint adopted to prevent the system degenerating into a branched network, are selected and costed. It is found that the most favourable optimum is in the vicinity of a vertex in the solution space corresponding to the minimum spanning tree. In the third stage, commercial pipes are specified and the design finalised. Upper bound formulae for the number of spanning trees and hydraulically feasible solutions in a network have also been proposed. The treatment of large networks by a heuristic procedure is described which is shown to result in significant economies compared with designs obtained by non-linear programming.


2014 ◽  
Vol 89 ◽  
pp. 1545-1552 ◽  
Author(s):  
V. Ruzza ◽  
E. Crestani ◽  
G. Darvini ◽  
P. Salandin

2017 ◽  
Author(s):  
Stelios G. Vrachimis ◽  
Demetrios G. Eliades ◽  
Marios M. Polycarpou

Abstract. Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network, as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state-estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to estimate the unaccounted-for water in water distribution networks. As a case study, the method is applied to a transport network in Cyprus, using actual data in real-time.


2020 ◽  
Vol 2 (1) ◽  
pp. 59
Author(s):  
Joaquim Sousa ◽  
Nuno Martinho ◽  
João Muranho ◽  
Alfeu Sá Marques

Leakage in water distribution networks (WDN) is still a major concern for water companies. In recent years, the scientific community has dedicated some effort to the leakage calibration issue to obtain accurate models. But leakage modelling implies the use of a pressure-driven approach as well as specific data to define the pressure/leakage relationship. This paper presents the calibration process of a real case study WDN model. The process started with pressure step tests, the model was built in WaterNetGen and the leakage calibration process was performed by a simulated annealing algorithm. As illustrated, after calibration the model was able to produce accurate results.


2015 ◽  
Vol 119 ◽  
pp. 4-12 ◽  
Author(s):  
Shingo Adachi ◽  
Shinsuke Takahashi ◽  
Xiaoming Zhang ◽  
Minoru Umeki ◽  
Hideyuki Tadokoro

Sign in / Sign up

Export Citation Format

Share Document