Statistical approximation by double sequences of positive linear operators on modular spaces

Positivity ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Sevda Orhan ◽  
Kamil Demirci
Positivity ◽  
2009 ◽  
Vol 14 (2) ◽  
pp. 321-334 ◽  
Author(s):  
Sevda Karakuş ◽  
Kamil Demirci ◽  
Oktay Duman

Author(s):  
Sevda Yıldız ◽  
Kamil Demirci

We will obtain an abstract version of the Korovkin type approximation theorems with respect to the concept of statistical relative convergence in modular spaces for double sequences of positive linear operators. We will give an application showing that our results are stronger than classical ones. We will also study an extension to non-positive operators.


2015 ◽  
Vol 68 (3-4) ◽  
pp. 271-291 ◽  
Author(s):  
C. Bardaro ◽  
A. Boccuto ◽  
K. Demirci ◽  
I. Mantellini ◽  
S. Orhan

2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


2018 ◽  
Vol 24 (1) ◽  
pp. 1-16 ◽  
Author(s):  
H. M. Srivastava ◽  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray ◽  
U. K. Misra

AbstractRecently, the notion of positive linear operators by means of basic (orq-) Lagrange polynomials and{\mathcal{A}}-statistical convergence was introduced and studied in [M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means ofq-Lagrange polynomials andA-statistical approximation, Appl. Math. Comput. 219 2013, 12, 6911–6918]. In our present investigation, we introduce a certain deferred weighted{\mathcal{A}}-statistical convergence in order to establish some Korovkin-type approximation theorems associated with the functions 1,tand{t^{2}}defined on a Banach space{C[0,1]}for a sequence of (presumably new) positive linear operators based upon{(p,q)}-Lagrange polynomials. Furthermore, we investigate the deferred weighted{\mathcal{A}}-statistical rates for the same set of functions with the help of the modulus of continuity and the elements of the Lipschitz class. We also consider a number of interesting special cases and illustrative examples in support of our definitions and of the results which are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document