Determinants of soil carbon- and nitrogen-hydrolyzing enzymes within different afforested lands in central China

Author(s):  
Qianxi Li ◽  
Yiran Dong ◽  
Qian Zhang ◽  
Wei Jia ◽  
Xiaoli Cheng
Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 188 ◽  
Author(s):  
Renhui Miao ◽  
Jun Ma ◽  
Yinzhan Liu ◽  
Yanchun Liu ◽  
Zhongling Yang ◽  
...  

Global changes and human disturbances can strongly affect the quantity of aboveground litter entering soils, which could result in substantial cascading effects on soil biogeochemical processes in forests. Despite extensive reports, it is unclear how the variations in litter depth affect soil carbon and nitrogen cycling. The responses of soil carbon and nitrogen to the variability of litter inputs were examined in a coniferous–broadleaf mixed forest of Central China. The litter input manipulation included five treatments: no litter input, natural litter, double litter, triple litter, and quadruple litter. Multifold litter additions decreased soil temperature but did not affect soil moisture after 2.5 years. Reductions in soil pH under litter additions were larger than increases under no litter input. Litter quantity did not affect soil total organic carbon, whereas litter addition stimulated soil dissolved organic carbon more strongly than no litter input suppressed it. The triggering priming effect of litter manipulation on soil respiration requires a substantial litter quantity, and the impacts of a slight litter change on soil respiration are negligible. Litter quantity did not impact soil total nitrogen, and only strong litter fluctuations changed the content of soil available nitrogen (nitrate nitrogen and ammonium nitrogen). Litter addition enhanced soil microbial biomass carbon and nitrogen more strongly than no litter input. Our results imply that the impacts of multifold litter inputs on soil carbon and nitrogen are different with a single litter treatment. These findings suggest that variability in aboveground litter inputs resulting from environmental change and human disturbances have great potential to change soil carbon and nitrogen in forest ecosystems. The variability of aboveground litter inputs needs to be taken into account to predict the responses of terrestrial soil carbon and nitrogen cycling to environmental changes and forest management.


Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

2004 ◽  
Vol 68 (2) ◽  
pp. 489 ◽  
Author(s):  
R. L. Haney ◽  
A. J. Franzluebbers ◽  
E. B. Porter ◽  
F. M. Hons ◽  
D. A. Zuberer

age ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Neal Wepking Tilhou ◽  
Renata L. G. Nave ◽  
Sindhu Jagadamma ◽  
Neal Eash ◽  
J. Travis Mulliniks

Sign in / Sign up

Export Citation Format

Share Document