Independent continuous and mapping method of structural topology optimization based on global stress approach

2010 ◽  
Vol 5 (2) ◽  
pp. 130-142 ◽  
Author(s):  
Yunkang Sui ◽  
Xirong Peng ◽  
Jili Feng ◽  
Hongling Ye
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Long Jiang ◽  
Xianfeng David Gu ◽  
Shikui Chen

Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance.


2013 ◽  
Vol 765-767 ◽  
pp. 1658-1661
Author(s):  
Hong Ling Ye ◽  
Yao Ming Li ◽  
Yan Ming Zhang ◽  
Yun Kang Sui

This paper refer to weight as objective and subject to multiple response amplitude of the harmonic excitation. The ICM method is employed for solving the topology optimization problem and dual sequence quadratic programming (DSQP) is effective to solve the algorithm. A numerical example was presented and demonstrated the validity and effectiveness of the ICM method.


2020 ◽  
Vol 2020.30 (0) ◽  
pp. 2105
Author(s):  
Yoshinori KOIKE ◽  
Takayuki YAMADA ◽  
Benliang ZHU ◽  
Kazuhiro IZUI ◽  
Shinji NISHIWAKI

2021 ◽  
Vol 106 ◽  
pp. 104483
Author(s):  
Jaydeep Rade ◽  
Aditya Balu ◽  
Ethan Herron ◽  
Jay Pathak ◽  
Rishikesh Ranade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document