mesh method
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 108)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Wei Ying ◽  
Ryu Fattah ◽  
Siyang Zhong ◽  
Jingwen Guo ◽  
Xin Zhang

2021 ◽  
Author(s):  
Zhuowen Meng ◽  
Shuang Huang ◽  
Zhongbing Lin

Abstract In this study, original rice straw biochar and two KMnO4-modified biochars (pre- and postmodification) were prepared, which were all pyrolysed at 400℃. Premodified biochar had the largest Cd adsorption capacity, strongest acid and solute buffering capacity, which benefited from the increase of carbonate content, specific surface area and the emergence of Mn(II) and MnOx through modification. Original and premodified biochars were then conducted four types of aging process, namely, aging without soil, co-aging with acid (pH=5.00), neutral (pH=7.00) and alkaline (pH=8.30) soils, using an improved three-layer mesh method. The adsorption capacities of modified biochar were always larger than those of original biochar after aging processes. After four aging processes, Cd(II) adsorption capacities were basically in the order of aged biochar without soil > biochar co-aged with alkaline soil > biochar co-aged with neutral soil > biochar co-aged with acid soil, and KMnO4-modified biochar was always better than original biochar after co-aging with soils. The dominant adsorption mechanism of original and premodified biochars (fresh and aged) for Cd(II) was all the precipitation and adsorption with minerals (accounted for 58.55%~85.55%). In this study, we highlighted that biochar remediation for Cd should be evaluated by co-aging with soil instead of aging without soil participation.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 138
Author(s):  
Salah B. Doma ◽  
Mahmoud A. Salem ◽  
Kalidas D. Sen

The energy eigenvalues of the ground state helium atom and lowest two excited states corresponding to the configurations 1s2s embedded in the plasma environment using Hulthén, Debye–Hückel and exponential cosine screened Coulomb model potentials are investigated within the variational Monte Carlo method, starting with the ultracompact trial wave functions in the form of generalized Hylleraas–Kinoshita functions and Guevara–Harris–Turbiner functions. The Lagrange mesh method calculations of energy are reported for the He atom in the ground and excited 1S and 3S states, which are in excellent agreement with the variational Monte Carlo results. Interesting relative ordering of eigenvalues are reported corresponding to the different screened Coulomb potentials in the He ground and excited electronic states, which are rationalized in terms of the comparison theorem of quantum mechanics.


Author(s):  
Amaury Munoz Oliva ◽  
Hermes Alves Filho

In this work, we present the most recent numerical results in a nodal approach, which resulted in the development of a new numerical spectral nodal method, based on the spectral analysis of the multigroup, isotropic scattering neutron transport equations in the discrete ordinates ($S_N$) formulation for fixed-source calculations in non-multiplying media (shielding problems). The numerical results refer to simulations of typical problems from the reactor physics field, in rectangular two-dimensional Cartesian geometry, $X, Y$ geometry, and are compared with the traditional Diamond Difference ($DD$) fine-mesh method results, used as a reference, and the spectral coarse-mesh method Green's function ($SGF$) results.


Author(s):  
Binqi Chen ◽  
Yiding Wang ◽  
Chendi Zhao ◽  
Yi Sun ◽  
Leiming Ning

AbstractIn order to study the fluid–solid coupling dynamic characteristics of parachute-payload system during drop process and analyze the unsteady aerodynamic characteristics under finite mass opening conditions, an adaptive moving fluid mesh method is developed on the basis of the existing arbitrary Lagrangian–Eulerian (ALE) fluid–solid coupling method. The calculation results of open force and drop velocity on the C-9 parachute demonstrate the effectiveness of this method. On this basis, the effect of canopies with three different permeability on parachute-payload system motion characteristic including opening property, steady descent property and stability is studied. Comparative analysis is conducted for structures and characteristics of vortex with different canopy materials, and interference mechanism of unsteady flow for parachute-payload system in unsteady oscillation is revealed. The results show that the adaptive moving fluid mesh method can effectively eliminate restrictions of existing simulation methods for parachute-payload system and significantly reduce calculation time. For the lightweight parachute, permeability has significant effect on kinetic characteristic of parachute-payload system. Canopy with large permeability has small opening load and structural stress in opening stage. After opening, there are mainly small vortexes distributed evenly behind the canopy with good stability. However, canopy with small permeability has obvious breath behavior and oscillation in opening stage. The main vortexes periodically shed off after opening. With the change of permeability from small to large, Parachute-payload system eventually presents three steady descent modes: conical descent, gliding descent and stable vertical descent. Graphical abstract


2021 ◽  
Vol 60 (5) ◽  
pp. 4441-4450
Author(s):  
M.B. Almatrafi ◽  
Abdulghani Alharbi ◽  
Kh. Lotfy ◽  
A.A. El-Bary

Sign in / Sign up

Export Citation Format

Share Document