Variational results on flag manifolds: Harmonic maps, geodesics and Einstein metrics

2011 ◽  
Vol 10 (2) ◽  
pp. 307-325 ◽  
Author(s):  
Caio J. C. Negreiros ◽  
Lino Grama ◽  
Neiton P. da Silva
2013 ◽  
Vol 193 (4) ◽  
pp. 1089-1102
Author(s):  
Lino Grama ◽  
Caio J. C. Negreiros ◽  
Luiz A. B. San Martin

1997 ◽  
Vol 196 (2) ◽  
pp. 620-629 ◽  
Author(s):  
H. Azad ◽  
R. Kobayashi ◽  
M.N. Qureshi

2013 ◽  
Vol 24 (10) ◽  
pp. 1350077 ◽  
Author(s):  
ANDREAS ARVANITOYEORGOS ◽  
IOANNIS CHRYSIKOS ◽  
YUSUKE SAKANE

We construct the homogeneous Einstein equation for generalized flag manifolds G/K of a compact simple Lie group G whose isotropy representation decomposes into five inequivalent irreducible Ad (K)-submodules. To this end, we apply a new technique which is based on a fibration of a flag manifold over another such space and the theory of Riemannian submersions. We classify all generalized flag manifolds with five isotropy summands, and we use Gröbner bases to study the corresponding polynomial systems for the Einstein equation. For the generalized flag manifolds E6/(SU(4) × SU(2) × U(1) × U(1)) and E7/(U(1) × U(6)) we find explicitly all invariant Einstein metrics up to isometry. For the generalized flag manifolds SO (2ℓ + 1)/( U (1) × U (p) × SO (2(ℓ - p - 1) + 1)) and SO (2ℓ)/( U (1) × U (p) × SO (2(ℓ - p - 1))) we prove existence of at least two non-Kähler–Einstein metrics. For small values of ℓ and p we give the precise number of invariant Einstein metrics.


2011 ◽  
Vol 61 (8) ◽  
pp. 1587-1600 ◽  
Author(s):  
Stavros Anastassiou ◽  
Ioannis Chrysikos

2013 ◽  
Vol 55 ◽  
pp. 59-71 ◽  
Author(s):  
Andreas Arvanitoyeorgos ◽  
Ioannis Chrysikos ◽  
Yusuke Sakane

Sign in / Sign up

Export Citation Format

Share Document