einstein metrics
Recently Published Documents


TOTAL DOCUMENTS

598
(FIVE YEARS 98)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Alice Lim

Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.


2022 ◽  
Vol Volume 5 ◽  
Author(s):  
Yoshinori Hashimoto ◽  
Julien Keller

For a holomorphic vector bundle $E$ over a polarised K\"ahler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. In particular, we provide an explicit estimate which proves that Donaldson's functional is coercive on the set of Fubini-Study metrics if $E$ is slope stable, and give a new proof of Hermitian-Einstein metrics implying slope stability.


2022 ◽  
Vol 120 (1) ◽  
Author(s):  
Tristan C. Collins ◽  
Tomoyuki Hisamoto ◽  
Ryosuke Takahashi

2021 ◽  
Vol 60 (1) ◽  
pp. 23-29
Author(s):  
Pavel N. Klepikov ◽  
Evgeny D. Rodionov ◽  
Olesya P. Khromova

Semisymmetric connections were first discovered by E. Cartan and are a natural generalization of the Levi-Civita connection. The properties of the parallel transfer of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano and other mathematicians. In this paper, a mathematical model is constructed for studying semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional unimodular Lie groups with left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that in this case there are nontrivial invariant semisimetric connections. Previously, the authors carried out similar studies in the class of Einstein metrics.


Author(s):  
Paul Schwahn

AbstractWe prove the linear stability with respect to the Einstein-Hilbert action of the symmetric spaces $${\text {SU}}(n)$$ SU ( n ) , $$n\ge 3$$ n ≥ 3 , and $$E_6/F_4$$ E 6 / F 4 . Combined with earlier results, this resolves the stability problem for irreducible symmetric spaces of compact type.


Author(s):  
D.V. Vylegzhanin ◽  
P.N. Klepikov ◽  
E.D. Rodionov ◽  
O.P. Khromova

Metric connections with vector torsion, or semisymmetric connections, were first discovered by E. Cartan. They are a natural generalization of the Levi-Civita connection. The properties of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano, and other mathematicians. Ricci solitons are the solution to the Ricci flow and a natural generalization of Einstein's metrics. In the general case, they were investigated by many mathematicians, which was reflected in the reviews by H.-D. Cao, R.M. Aroyo — R. Lafuente. This question is best studied in the case of trivial Ricci solitons, or Einstein metrics, as well as the homogeneous Riemannian case. This paper investigates semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional non-unimodularLie groups with the left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that there are nontrivial invariant semisymmetric connections in this case. In addition, it is shown that there are nontrivial invariant Ricci solitons.


2021 ◽  
pp. 1-20
Author(s):  
Junchao Shentu ◽  
Chen Zhao

The existence of Kähler Einstein metrics with mixed cone and cusp singularity has received considerable attentions in recent years. It is believed that such kind of metric would give rise to important geometric invariants. We computed their [Formula: see text]-Hodge–Frölicher spectral sequence under the Dirichlet and Neumann boundary conditions and examine the pure Hodge structures on them. It turns out that these cohomologies agree well with the de Rham cohomology of a good compactification.


Sign in / Sign up

Export Citation Format

Share Document