Essential Norm of Weighted Composition Operators and Difference of Composition Operators Between Standard Weighted Bergman Spaces

2014 ◽  
Vol 9 (6) ◽  
pp. 1411-1432 ◽  
Author(s):  
Mikael Lindström ◽  
Erno Saukko

2020 ◽  
Vol 126 (3) ◽  
pp. 519-539
Author(s):  
Juntao Du ◽  
Songxiao Li ◽  
Yecheng Shi

In this paper, we investigate the boundedness, compactness, essential norm and the Schatten class of weighted composition operators $uC_\varphi $ on Bergman type spaces $A_\omega ^p $ induced by a doubling weight ω. Let $X=\{u\in H(\mathbb{D} ): uC_\varphi \colon A_\omega ^p\to A_\omega ^p\ \text {is bounded}\}$. For some regular weights ω, we obtain that $X=H^\infty $ if and only if ϕ is a finite Blaschke product.



2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Ram Krishan ◽  
Mehak Sharma ◽  
Ajay K. Sharma

We compute upper and lower bounds for essential norm of difference of composition operators acting from weighted Bergman spaces to Bloch-type spaces.



2007 ◽  
Vol 142 (3) ◽  
pp. 525-533 ◽  
Author(s):  
ŽELJKO ČUČKOVIĆ ◽  
RUHAN ZHAO

AbstractWe give estimates of the essential norms of weighted composition operators acting between Bergman spaces on strongly pseudoconvex domains. We also characterize boundedness and compactness of these operators.



Sign in / Sign up

Export Citation Format

Share Document