scholarly journals Neuroligin-3 Regulates Excitatory Synaptic Transmission and EPSP-Spike Coupling in the Dentate Gyrus In Vivo

Author(s):  
Julia Muellerleile ◽  
Matej Vnencak ◽  
Angelo Ippolito ◽  
Dilja Krueger-Burg ◽  
Tassilo Jungenitz ◽  
...  

Abstract Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.

2015 ◽  
Vol 7 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Fei-fei Pu ◽  
Song Yin ◽  
Hong-ying Chen ◽  
Zhi Dai ◽  
Tian-xiu Qian ◽  
...  

2004 ◽  
Vol 91 (2) ◽  
pp. 613-622 ◽  
Author(s):  
Michael P. O'Boyle ◽  
Viet Do ◽  
Brian E. Derrick ◽  
Brenda J. Claiborne

Previous in vitro studies demonstrated that long-term potentiation (LTP) could be elicited at medial perforant path (MPP) synapses onto hippocampal granule cells in slices from 7-day-old rats. In contrast, in vivo studies suggested that LTP at perforant path synapses could not be induced until at least days 9 or 10 and then in only a small percentage of animals. Because several characteristics of the oldest granule cells are adult-like on day 7, we re-examined the possibility of eliciting LTP in 7-day-old rats in vivo. We also recorded from 8- and 9-day-old rats to further elucidate the occurrence and magnitude of LTP in neonates. With halothane anesthesia, all animals in each age group exhibited synaptic plasticity of the excitatory postsynaptic potential following high-frequency stimulation of the MPP. In 7-day-old rats, LTP was elicited in 40% of the animals and had an average magnitude of 143%. Long-term depression (LTD) alone (magnitude of 84%) was induced in 40% of the animals, while short-term potentiation (STP) alone (magnitude of 123%) was induced in 10%. STP followed by LTD was elicited in the remaining 10%. Data were similar for all ages combined. In addition, the N-methyl-d-aspartate (NMDA) antagonist ( R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the occurrence of LTP at each age and doubled the percentage of animals expressing LTD alone for all ages combined. These results demonstrate that tetanic stimulation can elicit LTP or LTD at MPP synapses in 7-day-old rats, supporting our premise that at least a portion of the dentate gyrus is functional at this early age.


2011 ◽  
Vol 32 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Jun Yang ◽  
Zhuang-Li Hu ◽  
Bo Jiang ◽  
Lan Ni ◽  
You Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document