granule cells
Recently Published Documents


TOTAL DOCUMENTS

3175
(FIVE YEARS 358)

H-INDEX

126
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


2022 ◽  
Author(s):  
Muhammad Nauman Arshad ◽  
Simon Oppenheimer ◽  
Jaye Jeong ◽  
Bilge Buyukdemirtas ◽  
Janice R Naegele

GABAergic interneurons within the dentate gyrus of the hippocampus regulate adult neurogenesis, including proliferation, migration, and maturation of new granule cells born in the subgranular zone (SGZ) of the dentate gyrus (DG). In temporal lobe epilepsy (TLE), some adult-born granule cells migrate ectopically into the hilus, and these cells contribute to increased hyperexcitability and seizures. Yet, transplanting embryonic day 13.5 fetal mouse medial ganglionic eminence (MGE) GABAergic progenitors into the hippocampus of mice with TLE ameliorates spontaneous seizures, due in part, to increased postsynaptic inhibition of adult-born granule cells. Here, we asked whether MGE progenitor transplantation affects earlier stages of adult neurogenesis, by comparing patterns of neurogenesis in naive mice and epileptic (TLE) mice, with or without MGE transplants. In naive and TLE mice, transplanted MGE cells showed comparable migration and process outgrowth. However, in TLE mice with MGE transplants, fewer adult-born Type 3 progenitors migrated ectopically. Furthermore, more Type 3 progenitors survived and migrated into the granule cell layer (GCL), as determined by immunostaining for doublecortin or the thymidine analogue, bromodeoxyuridine (BrdU). To determine whether MGE transplants affected earlier stages of adult neurogenesis, we compared proliferation in the SGZ two-hours after pulse labeling with BrdU in naive vs. TLE mice and found no significant differences. Furthermore, MGE progenitor transplantation had no effect on cell proliferation in the SGZ. Moreover, when compared to naive mice, TLE mice showed increases in inverted Type 1 progenitors and Type 2 progenitors, concomitant with a decrease in the normally oriented radial Type 1 progenitors. Strikingly, these alterations were abrogated by MGE transplantation. Thus, MGE transplants appear to reverse seizure-induced abnormalities in adult neurogenesis by increasing differentiation and radial migration of adult-born granule cell progenitors, outcomes that may ameliorate seizures.


2022 ◽  
Vol 23 (2) ◽  
pp. 592
Author(s):  
Brigitte Potier ◽  
Louison Lallemant ◽  
Sandrine Parrot ◽  
Aline Huguet-Lachon ◽  
Geneviève Gourdon ◽  
...  

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


2022 ◽  
Author(s):  
Ralf Kleene ◽  
Gabriele Loers ◽  
Ahmed Sharaf ◽  
Shaobo Wang ◽  
Hardeep Kataria ◽  
...  

Deficiency in the extracellular matrix glycoprotein Reelin severely affects migration of neurons during development. The function of serine at position 1283 in Reelin has remained uncertain. To explore its relevance we generated rlnA/A mice that carry alanine instead of serine at position 1283, thereby disrupting the putative casein kinase 2 (CK2) phosphorylation site S1283DGD. Mutated mice displayed reeler-like locomotor behavior, abnormal brain anatomy and decrease of Reelin RNA and protein levels during development and in adulthood. Since serine 1283 was previously proposed to mediate proteolysis of adhesion molecules, we investigated proteolysis of cell adhesion molecule L1 and found it normal in rlnA/A mice. Neuronal migration in the embryonic rlnA/A cerebral cortex was impaired, but rescued by in utero electroporation of the Reelin fragment N-R6 containing the putative CK2 phosphorylation site. In rlnA/A mice migration of cerebellar granule cells in vitro was promoted by application of wild-type but not by mutated Reelin. In cerebellar neuron cultures, Reelin expression was decreased upon inhibition of ecto-phosphorylation by CK2. Biochemically purified wild-type, but not mutated Reelin was found phosphorylated. Altogether, the results indicate that ecto-phosphorylation at serine 1283 rather than proteolytic processing of adhesion molecules by Reelin plays an important role in Reelin functions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sara V. Maurer ◽  
Cuicui Kong ◽  
Niccolò Terrando ◽  
Christina L. Williams

Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.


2021 ◽  
Author(s):  
Xiao-Hong Su ◽  
Wei-Peng Li ◽  
Yi-Jie Wang ◽  
Jia Liu ◽  
Jun-Yu Liu ◽  
...  

AbstractDepression is a common but serious mental disorder and can be caused by the side effects of medications. Evidence from abundant clinical case reports and experimental animal models has revealed the association between the classic anti-acne drug 13-cis-retinoic acid (13-cis-RA) and depressive symptoms. However, direct experimental evidence of this mechanism and information on appropriate therapeutic rescue strategies are lacking. Herein, our data revealed that chronic administration of 13-cis-RA to adolescent mice induced depression-like behavior but not anxiety-like behavior. We next demonstrated that chronic 13-cis-RA application increased neural activity in the dentate gyrus (DG) using c-Fos immunostaining, which may be critically involved in some aspects of depression-like behavior. Therefore, we assessed electrophysiological functions by obtaining whole-cell patch-clamp recordings of dentate granule cells (DGCs), which revealed that chronic 13-cis-RA treatment shifted the excitatory-inhibitory balance toward excitation and increased intrinsic excitability. Furthermore, a pharmacogenetic approach was performed to repeatedly silence DGCs, and this manipulation could rescue depression-like behavior in chronically 13-cis-RA-treated mice, suggesting DGCs as a potential cellular target for the direct alleviation of 13-cis-RA-induced depression.


Author(s):  
Gregg Duester

A paper recently published by eLife on forebrain cortical synaptic plasticity reports that retinoic acid (RA) alters synaptopodin-dependent metaplasticity in mouse dentate granule cells (Lenz et al., 2021). RA is the active form of vitamin A that functions as a ligand for nuclear RA receptors that directly bind genomic control regions to regulate gene expression (Chambon, 1996; Ghyselinck and Duester, 2019). However, some studies have suggested that RA may have nongenomic effects outside of the nucleus, particularly with regard to synaptic plasticity (Aoto et al., 2008; Zhang et al., 2018). The current results reported by Lenz et al. demonstrate that treatment with pharmacological levels of RA can alter synaptic plasticity which may be useful to treat neurological diseases (Lenz et al., 2021). However, the results reported here and those reported by others have not shown that endogenous RA is normally required for synaptic plasticity (or any other nongenomic effect) as there are no reports of genetic loss-of-function studies that remove endogenous RA in adult brain. The implication is that pharmacological levels of RA result in nongenomic effects, some of which may be helpful to treat certain diseases but in other cases this may cause unwanted side-effects.


2021 ◽  
pp. 99-119
Author(s):  
Thomas Butts ◽  
Victoria Rook ◽  
Tristan Varela ◽  
Leigh Wilson ◽  
Richard J. T. Wingate
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fengjiao Chen ◽  
Wei Liu ◽  
Penglai Liu ◽  
Zhen Wang ◽  
You Zhou ◽  
...  

AbstractOlfactory dysfunction is an early pre-motor symptom of Parkinson’s disease (PD) but the neural mechanisms underlying this dysfunction remain largely unknown. Aggregation of α-synuclein is observed in the olfactory bulb (OB) during the early stages of PD, indicating a relationship between α-synuclein pathology and hyposmia. Here we investigate whether and how α-synuclein aggregates modulate neural activity in the OB at the single-cell and synaptic levels. We induced α-synuclein aggregation specifically in the OB via overexpression of double-mutant human α-synuclein by an adeno-associated viral (AAV) vector. We found that α-synuclein aggregation in the OB decreased the ability of mice to detect odors and to perceive attractive odors. The spontaneous activity and odor-evoked firing rates of single mitral/tufted cells (M/Ts) were increased by α-synuclein aggregates with the amplitude of odor-evoked high-gamma oscillations increased. Furthermore, the decreased activity in granule cells (GCs) and impaired inhibitory synaptic function were responsible for the observed hyperactivity of M/Ts induced by α-synuclein aggregates. These results provide direct evidences of the role of α-synuclein aggregates on PD-related olfactory dysfunction and reveal the neural circuit mechanisms by which olfaction is modulated by α-synuclein pathology.


Sign in / Sign up

Export Citation Format

Share Document