scholarly journals Characters, Weil sums and c-differential uniformity with an application to the perturbed Gold function

Author(s):  
Pantelimon Stănică ◽  
Constanza Riera ◽  
Anton Tkachenko
Author(s):  
Marco Calderini

Abstract Functions with low differential uniformity can be used in a block cipher as S-boxes since they have good resistance to differential attacks. In this paper we consider piecewise constructions for permutations with low differential uniformity. In particular, we give two constructions of differentially 6-uniform functions, modifying the Gold function and the Bracken–Leander function on a subfield.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yue Leng ◽  
Jinyang Chen ◽  
Tao Xie

Permutations with low differential uniformity, high algebraic degree, and high nonlinearity over F22k can be used as the substitution boxes for many block ciphers. In this paper, several classes of low differential uniformity permutations are constructed based on the method of choosing two permutations over F22k to get the desired permutations. The resulted low differential uniformity permutations have high algebraic degrees and nonlinearities simultaneously, which provide more choices for the substitution boxes. Moreover, some numerical examples are provided to show the efficacy of the theoretical results.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 717 ◽  
Author(s):  
Musheer Ahmad ◽  
Eesa Al-Solami

Static substitution-boxes in fixed structured block ciphers may make the system vulnerable to cryptanalysis. However, key-dependent dynamic substitution-boxes (S-boxes) assume to improve the security and robustness of the whole cryptosystem. This paper proposes to present the construction of key-dependent dynamic S-boxes having high nonlinearity. The proposed scheme involves the evolution of initially generated S-box for improved nonlinearity based on the fractional-order time-delayed Hopfield neural network. The cryptographic performance of the evolved S-box is assessed by using standard security parameters, including nonlinearity, strict avalanche criterion, bits independence criterion, differential uniformity, linear approximation probability, etc. The proposed scheme is able to evolve an S-box having mean nonlinearity of 111.25, strict avalanche criteria value of 0.5007, and differential uniformity of 10. The performance assessments demonstrate that the proposed scheme and S-box have excellent features, and are thus capable of offering high nonlinearity in the cryptosystem. The comparison analysis further confirms the improved security features of anticipated scheme and S-box, as compared to many existing chaos-based and other S-boxes.


2016 ◽  
Vol 27 (5) ◽  
pp. 359-372 ◽  
Author(s):  
Riccardo Aragona ◽  
Marco Calderini ◽  
Daniele Maccauro ◽  
Massimiliano Sala

2016 ◽  
Vol 28 (1) ◽  
pp. 1-13 ◽  
Author(s):  
HONGWEI LI ◽  
LI YANG

A quantum algorithm to determine approximations of linear structures of Boolean functions is presented and analysed. Similar results have already been published (see Simon's algorithm) but only for some promise versions of the problem, and it has been shown that no exponential quantum speedup can be obtained for the general (no promise) version of the problem. In this paper, no additional promise assumptions are made. The approach presented is based on the method used in the Bernstein–Vazirani algorithm to identify linear Boolean functions and on ideas from Simon's period finding algorithm. A proper combination of these two approaches results here to a polynomial-time approximation to the linear structures set. Specifically, we show how the accuracy of the approximation with high probability changes according to the running time of the algorithm. Moreover, we show that the time required for the linear structure determine problem with high success probability is related to so called relative differential uniformity δf of a Boolean function f. Smaller differential uniformity is, shorter time is needed.


Sign in / Sign up

Export Citation Format

Share Document