An automatic multi-objective optimization tool for the optimum design of a cracked pressure vessel with composite coating

2019 ◽  
Vol 33 (10) ◽  
pp. 4867-4875
Author(s):  
Seyed Mohammad Navid Ghoreishi ◽  
Mahdi Fakoor ◽  
Mohammad Aminjafari
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Simon Desrochers ◽  
Damiano Pasini ◽  
Jorge Angeles

This work focuses on the multi-objective optimization of a compliant-mechanism accelerometer. The design objective is to maximize the sensitivity of the accelerometer in its sensing direction, while minimizing its sensitivity in all other directions. In addition, this work proposes a novel compliant hinge intended to reduce the stress concentration in compliant mechanisms. The paper starts with a brief description of the new compliant hinge, the Lamé-shaped hinge, followed by the formulation of the aposteriori multi-objective optimization of the compliant accelerometer. By using the normalized constrained method, an even distribution of the Pareto frontier is found. The paper also provides several optimum solutions on a Pareto plot, as well as the CAD model of the selected solution.


Author(s):  
Simon Desrochers ◽  
Jorge Angeles ◽  
Damiano Pasini

This work focuses on the multi-objective optimization of a compliant-mechanism accelerometer. The method is used to optimally design an accelerometer with the architecture of a novel version of the Sarrus mechanism. The purpose is to maximize the sensitivity of the accelerometer in its sensing direction, while minimizing its sensitivity in all other directions. The paper starts with a brief description of the dynamics model of the compliant mechanism, followed by the formulation of the a posteriori multi-objective optimization. By using the normalized constrained method, an evenly distribution of the Pareto frontier is found. The paper also provides several optimum solutions on a Pareto plot, as well as the CAD model of the selected solution.


Sign in / Sign up

Export Citation Format

Share Document