The optical-mechanical system of a space camera is composed of several complex components, and the effects of several factors (weight, gravity, modal frequency, temperature, etc.) on its system performance need to be considered during ground tests, launch, and in-orbit operation. In order to meet the system specifications of the optical camera system, the dimensional parameters of the optical camera structure need to be optimized. There is a highly nonlinear functional relationship between the dimensional parameters of the optical machine structure and the design indexes. The traditional method takes a significant amount of time for finite element calculation and is less efficient. In order to improve the optimization efficiency, a recurrent neural network prediction model based on the Bayesian regularization algorithm is proposed in this paper, and the NSGA-II is used to globally optimize multiple prediction objectives of the prediction model. The reflector of the space camera is used as an example to predict the weight, first-order modal frequency, and gravitational mirror deformation root mean square of the reflector, and to complete the lightweight design. The results show that the prediction model established by BR-RNN-NSGA-II offers high prediction accuracy for the design indexes of the reflector, which all reach over 99.6%, and BR-RNN-NSGA-II can complete the multi-objective optimization search efficiently and accurately. This paper provides a new idea of optimization of optical machine structure, which enriches the theory of complex structure design.