Phase portraits for quadratic homogeneous polynomial vector fields on % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB % PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0x % c9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8fr % Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJX % wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab-jj8tnaaCaaa % leqabaGaaGOmaaaaaaa!4488! $$ \mathbb{S}^2 $$

2009 ◽  
Vol 58 (3) ◽  
pp. 361-406 ◽  
Author(s):  
Jaume Llibre ◽  
Claudio Pessoa
2006 ◽  
Vol 16 (11) ◽  
pp. 3401-3410 ◽  
Author(s):  
MONTSERRAT CORBERA ◽  
JAUME LLIBRE

For polynomial vector fields in ℝ3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.


2016 ◽  
Vol 145 (6) ◽  
pp. 2539-2555 ◽  
Author(s):  
Jaume Giné ◽  
Jaume Llibre ◽  
Claudia Valls

Sign in / Sign up

Export Citation Format

Share Document