first integral
Recently Published Documents


TOTAL DOCUMENTS

419
(FIVE YEARS 95)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 1 (15) ◽  
pp. 119-122
Author(s):  
Svetlana Senotova

The article discusses reversible first-order reactions. A system of differential equations is written. First integral and stationary state found. Using Lyapunov's direct method, stationary stability was investigated


Author(s):  
Binesh Thankappan

Riemann zeta is defined as a function of a complex variable that analytically continues the sum of the Dirichlet series, when the real part is greater than unity. In this paper, the Riemann zeta associated with the finite energy possessed by a 2mm radius, free falling water droplet, crashing into a plane is considered. A modified zeta function is proposed which is incorporated to the spherical coordinates and real analysis has been performed. Through real analytic continuation, the single point of contact of the drop at the instant of touching the plane is analyzed. The zeta function is extracted at the point of destruction of the drop, where it defines a unique real function. A special property is assumed for some continuous functions, where the function’s first derivative and first integral combine together to a nullity at all points. Approximate reverse synthesis of such a function resulted in a special waveform named the dying-surge. Extending the proposed concept to general continuous real functions resulted in the synthesis of the corresponding function’s Dying-surge model. The Riemann zeta function associated with the water droplet can also be modeled as a dying–surge. The Dying- surge model corresponds to an electrical squeezing or compression of a waveform, which was originally defined over infinite arguments, squeezed to a finite number of values for arguments placed very close together with defined final and penultimate values. Synthesized results using simulation software are also presented, along with the analysis. The presence of surges in electrical circuits will correspond to electrical compression of some unknown continuous, real current or voltage function and the method can be used to estimate the original unknown function.


2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Vladimir A. Sharafutdinov

A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative is equal to zero. Such a field determines the first integral of the geodesic flow which is a degree m homogeneous polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the metric is of the form ds^2= λ(z)|dz|^2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the function λ satisfies the equation R(∂/∂z(λ(c∆^-1λ_zz+a))= 0 with some complex constants a and c≠0. The latter equation is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and λ + λ_0 satisfy the equation for a real constant λ0, 0, then there exists a non-zero Killing vector field on the torus.


2021 ◽  
Vol 7 (12) ◽  
pp. 277
Author(s):  
Ivan Galyaev ◽  
Alexey Mashtakov

We consider a natural extension of the Petitot–Citti–Sarti model of the primary visual cortex. In the extended model, the curvature of contours is taken into account. The occluded contours are completed via sub-Riemannian geodesics in the four-dimensional space M of positions, orientations, and curvatures. Here, M=R2×SO(2)×R models the configuration space of neurons of the visual cortex. We study the problem of sub-Riemannian geodesics on M via methods of geometric control theory. We prove complete controllability of the system and the existence of optimal controls. By application of the Pontryagin maximum principle, we derive a Hamiltonian system that describes the geodesics. We obtain the explicit parametrization of abnormal extremals. In the normal case, we provide three functionally independent first integrals. Numerical simulations indicate the existence of one more first integral that results in Liouville integrability of the system.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1539
Author(s):  
Sfundo C. Gumede ◽  
Keshlan S. Govinder ◽  
Sunil D. Maharaj

A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of yxx=f(x)y2, find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function f(x). We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of f(x)∼1x51−1x−15/7 which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.


2021 ◽  
Vol 38 (1) ◽  
pp. 67-94
Author(s):  
DAVID CHEBAN ◽  

In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1736
Author(s):  
Jaume Llibre

In many problems appearing in applied mathematics in the nonlinear ordinary differential systems, as in physics, chemist, economics, etc., if we have a differential system on a manifold of dimension, two of them having a first integral, then its phase portrait is completely determined. While the existence of first integrals for differential systems on manifolds of a dimension higher than two allows to reduce the dimension of the space in as many dimensions as independent first integrals we have. Hence, to know first integrals is important, but the following question appears: Given a differential system, how to know if it has a first integral? The symmetries of many differential systems force the existence of first integrals. This paper has two main objectives. First, we study how to compute first integrals for polynomial differential systems using the so-called Darboux theory of integrability. Furthermore, second, we show how to use the existence of first integrals for finding limit cycles in piecewise differential systems.


Author(s):  
Lei Zhao

The aim of this note is to explain the integrability of an integrable Boltzmann billiard model, previously established by Gallavotti and Jauslin [G. Gallavotti and I. Jauslin, A theorem on Ellipses, an integrable system and a theorem of Boltzmann, preprint (2020); arXiv:2008.01955], alternatively via the viewpoint of projective dynamics. We show that the energy of a corresponding spherical problem leads to an additional first integral of the system equivalent to Gallavotti–Jauslin’s first integral. The approach also leads to a family of integrable billiard models in the plane and on the sphere defined through the planar and spherical Kepler–Coulomb problems.


Sign in / Sign up

Export Citation Format

Share Document