Spherical maximal function, maximal Bochner–Riesz mean and geometrical maximal function on Herz spaces with variable exponents

Author(s):  
Kwok-Pun Ho
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Shengrong Wang ◽  
Jingshi Xu

In this paper, we obtain the boundedness of bilinear commutators generated by the bilinear Hardy operator and BMO functions on products of Herz spaces and Herz-Morrey spaces with variable exponents.


2018 ◽  
Vol 16 (1) ◽  
pp. 1607-1620
Author(s):  
Yanqi Yang ◽  
Shuangping Tao

AbstractThe aim of this paper is to deal with the boundedness of the θ-type Calderón-Zygmund operators and their commutators on Herz spaces with two variable exponents p(⋅), q(⋅). It is proved that the θ-type Calderón-Zygmund operators are bounded on the homogeneous Herz space with variable exponents $\begin{array}{} \displaystyle \dot{K}^{\alpha,q(\cdot)}_{p(\cdot)}(\mathbb{R}^{n}). \end{array}$ Furthermore, the boundedness of the corresponding commutators generated by BMO function and Lipschitz function is also obtained respectively.


Sign in / Sign up

Export Citation Format

Share Document