Open Mathematics
Latest Publications


TOTAL DOCUMENTS

1254
(FIVE YEARS 246)

H-INDEX

14
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2391-5455

2021 ◽  
Vol 19 (1) ◽  
pp. 77-86
Author(s):  
Xiangjun Kong ◽  
Pei Wang ◽  
Jian Tang

Abstract In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼ \sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


2021 ◽  
Vol 19 (1) ◽  
pp. 259-267
Author(s):  
Liuyang Shao ◽  
Yingmin Wang

Abstract In this study, we consider the following quasilinear Choquard equation with singularity − Δ u + V ( x ) u − u Δ u 2 + λ ( I α ∗ ∣ u ∣ p ) ∣ u ∣ p − 2 u = K ( x ) u − γ , x ∈ R N , u > 0 , x ∈ R N , \left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where I α {I}_{\alpha } is a Riesz potential, 0 < α < N 0\lt \alpha \lt N , and N + α N < p < N + α N − 2 \displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2} , with λ > 0 \lambda \gt 0 . Under suitable assumption on V V and K K , we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ → 0 \lambda \to 0 .


2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2021 ◽  
Vol 19 (1) ◽  
pp. 329-337
Author(s):  
Huo Tang ◽  
Kaliappan Vijaya ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

Abstract Let f k ( z ) = z + ∑ n = 2 k a n z n {f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f ( z ) = z + ∑ n = 2 ∞ a n z n f\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n} . In this paper, we determine sharp lower bounds for Re { f ( z ) / f k ( z ) } {\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\} , Re { f k ( z ) / f ( z ) } {\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\} , Re { f ′ ( z ) / f k ′ ( z ) } {\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re { f k ′ ( z ) / f ′ ( z ) } {\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\} , where f ( z ) f\left(z) belongs to the subclass J p , q m ( μ , α , β ) {{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean ( p , q ) \left(p,q) -differential operator. In addition, the inclusion relations involving N δ ( e ) {N}_{\delta }\left(e) of this generalized function class are considered.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


2021 ◽  
Vol 19 (1) ◽  
pp. 583-599
Author(s):  
Beata Bajorska-Harapińska ◽  
Jakub Jan Ludew ◽  
Barbara Smoleń-Duda ◽  
Roman Wituła

Abstract In this paper, we introduce generalizations of Quaternacci sequences (Quaternaccis), called Split Quaternacci sequences, which arose on a base of split quaternion algebras. Explicit and recurrent formulae for Split Quaternacci sequences are given, as well as generating functions. Also, matrices related to Split Quaternaccis sequences are investigated. Moreover, new identities connecting Horadam sequences with other known sequences are generated. Analogous identities for Horadam quaternions and split Horadam quaternions are proved.


2021 ◽  
Vol 19 (1) ◽  
pp. 111-120
Author(s):  
Qinghua Zhang ◽  
Zhizhong Tan

Abstract This paper deals with the abstract evolution equations in L s {L}^{s} -spaces with critical temporal weights. First, embedding and interpolation properties of the critical L s {L}^{s} -spaces with different exponents s s are investigated, then solvability of the linear evolution equation, attached to which the inhomogeneous term f f and its average Φ f \Phi f both lie in an L 1 / s s {L}_{1\hspace{-0.08em}\text{/}\hspace{-0.08em}s}^{s} -space, is established. Based on these results, Cauchy problem of the semi-linear evolution equation is treated, where the nonlinear operator F ( t , u ) F\left(t,u) has a growth number ρ ≥ s + 1 \rho \ge s+1 , and its asymptotic behavior acts like α ( t ) / t \alpha \left(t)\hspace{-0.1em}\text{/}\hspace{-0.1em}t as t → 0 t\to 0 for some bounded function α ( t ) \alpha \left(t) like ( − log t ) − p {\left(-\log t)}^{-p} with 2 ≤ p < ∞ 2\le p\lt \infty .


Sign in / Sign up

Export Citation Format

Share Document