scholarly journals A normal criterion concerning zero numbers

Author(s):  
Chengxiong Sun

AbstractLet $$n \ge 4$$ n ≥ 4 be a positive integer, $$\mathcal {F}$$ F be a family of meromorphic functions in D and let $$a(z)(\not \equiv 0), b(z)$$ a ( z ) ( ≢ 0 ) , b ( z ) be two holomorphic functions in D. If, for any function $$f \in \mathcal { F}$$ f ∈ F , (1)$$f(z) \ne \infty $$ f ( z ) ≠ ∞ when $$a(z)=0$$ a ( z ) = 0 , (2) $$f'(z)-a(z)f^{n}(z)-b(z)$$ f ′ ( z ) - a ( z ) f n ( z ) - b ( z ) has at most one zero in D, then $$\mathcal {F}$$ F is normal in D.

2011 ◽  
Vol 18 (1) ◽  
pp. 31-38
Author(s):  
Jun-Fan Chen

Abstract Let k be a positive integer, and let ℱ be a family of functions holomorphic on a domain D in C, all of whose zeros are of multiplicity at least k + 1. Let h be a function meromorphic on D, h ≢ 0, ∞. Suppose that for each ƒ ∈ ℱ, ƒ(k)(z) ≠ h(z) for z ∈ D. Then ℱ is a normal family on D. The condition that the zeros of functions in ℱ are of multiplicity at least k + 1 cannot be weakened, and the corresponding result for families of meromorphic functions is no longer true.


2014 ◽  
Vol 45 (2) ◽  
pp. 109-117
Author(s):  
Qian Lu ◽  
Qilong Liao

Let $\mathscr{F}$ be a family of meromorphic functions in a plane domain $D$. If for every function $f\in\mathscr{F}$, all of whose zeros have,at least,multiplicity $l$ and poles have, at least,multiplicity $p$, and for each pair functions $f$ and $g$ in $\mathscr{F}$, $f^{(k)}$ and $g^{(k)}$ share 1 in $D$, where $k,l,$ and $p$ are three positive integer satisfying $\frac{k+1}{l}+\frac{1}{p}\leq 1$, then $\mathscr{F}$ is normal.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jie Ding ◽  
Jianming Qi ◽  
Taiying Zhu

LetFbe a family of meromorphic functions defined inD, letψ(≢0),a0,a1,...,ak-1be holomorphic functions inD, and letkbe a positive integer. Suppose that, for every functionf∈F,f≠0,P(f)=f(k)+ak-1f(k-1)+⋯+a1f'+a0f≠0and, for every pair functions(f,g)∈F,P(f),P(g)shareψ, thenFis normal inD.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2009 ◽  
Vol 86 (3) ◽  
pp. 339-354 ◽  
Author(s):  
MINGLIANG FANG ◽  
LAWRENCE ZALCMAN

AbstractLet ℱ be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least k+1. Let a and b be distinct finite complex numbers, and let k be a positive integer. If, for each pair of functions f and g in ℱ, f(k) and g(k) share the set S={a,b}, then ℱ is normal in D. The condition that the zeros of functions in ℱ have multiplicity at least k+1 cannot be weakened.


2005 ◽  
Vol 78 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Xiaojun Huang ◽  
Yongxing Gu

AbstractIn this paper, we prove that for a transcendental meromorphic function f(z) on the complex plane, the inequality T(r, f) < 6N (r, 1/(f2 f(k)−1)) + S(r, f) holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let ℱ be a family of meromorphic functions on a domain D and let k be a positive integer. If for each ℱ ∈ ℱ, all zeros of ℱ are of multiplicity at least k, and f2 f(k) ≠ 1 for z ∈ D, then ℱ is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Xin-Li Wang ◽  
Ning Cui

We study the problem of normal families of meromorphic functions concerning polynomials and shared values. We prove that a family ℱ of meromorphic functions in a domain D is normal if, for each function f∈ℱ, Pfzfkz=a⇔fkz=b, where P is a polynomial with the origin as zero, k is a positive integer, and a ≠0, b are two finite constants.


Sign in / Sign up

Export Citation Format

Share Document