A normal criterion concerning zero numbers
AbstractLet $$n \ge 4$$ n ≥ 4 be a positive integer, $$\mathcal {F}$$ F be a family of meromorphic functions in D and let $$a(z)(\not \equiv 0), b(z)$$ a ( z ) ( ≢ 0 ) , b ( z ) be two holomorphic functions in D. If, for any function $$f \in \mathcal { F}$$ f ∈ F , (1)$$f(z) \ne \infty $$ f ( z ) ≠ ∞ when $$a(z)=0$$ a ( z ) = 0 , (2) $$f'(z)-a(z)f^{n}(z)-b(z)$$ f ′ ( z ) - a ( z ) f n ( z ) - b ( z ) has at most one zero in D, then $$\mathcal {F}$$ F is normal in D.