transcendental meromorphic function
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 56 (1) ◽  
pp. 55-60
Author(s):  
W. Lü ◽  
B. CHAKRABORTY

The aim of this paper is to study the zero distribution of the differential polynomial $\displaystyle af^{q_{0}}(f')^{q_{1}}...(f^{(k)})^{q_{k}}-\varphi,$where $f$ is a transcendental meromorphic function and $a=a(z)(\not\equiv 0,\infty)$ and $\varphi(\not\equiv 0,\infty)$ are small functions of $f$. Moreover, using this value distribution result, we prove the following normality criterion for family of analytic functions:\\ {\it Let $\mathscr{F}$ be a family of analytic functions on a domain $D$ and let $k \geq1$, $q_{0}\geq 2$, $q_{i} \geq 0$ $(i=1,2,\ldots,k-1)$, $q_{k}\geq 1$ be positive integers. If for each $f\in \mathscr{F}$: i.\ $f$ has only zeros of multiplicity at least $k$,\ ii.\ $\displaystyle f^{q_{0}}(f')^{q_{1}}\ldots(f^{(k)})^{q_{k}}\not=1$,then $\mathscr{F}$ is normal on domain $D$.


2021 ◽  
Vol 55 (1) ◽  
pp. 64-75
Author(s):  
P. Sahoo ◽  
G. Biswas

In this paper, we study the value distribution of the differential polynomial $\varphi f^2f^{(k)}-1$, where $f(z)$ is a transcendental meromorphic function, $\varphi (z)\;(\not\equiv 0)$ is a small function of $f(z)$ and $k\;(\geq 2)$ is a positive integer. We obtain an inequality concerning the Nevanlinna Characteristic function $T(r,f)$ estimated by reduced counting function only. Our result extends the result due to J.F. Xu and H.X. Yi [J. Math. Inequal., 10 (2016), 971-976].


Author(s):  
Lasse Rempe

AbstractWe show that there is a transcendental meromorphic function with an invariant Baker domain U such that every singular value of f is a super-attracting periodic point. This answers a question of Bergweiler from 1993. We also show that U can be chosen to contain arbitrarily large round annuli, centred at zero, of definite modulus. This answers a question of Mihaljević and the author from 2013, and complements recent work of Barański et al concerning this question.


Filomat ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 579-589
Author(s):  
Pulak Sahoo ◽  
Anjan Sarkar

In the paper, we study the value distribution of the differential polynomial Afn f(k) + Bf n+1 -1, where f is a transcendental meromorphic function and n(? 2),k(?2) are positive integers. We prove an inequality for the Nevanlinna characteristic function T(r,f) in terms of reduced counting function only. The result of the paper not only improves the result due to Q.D. Zhang [J. Chengdu Ins. Meteor., 20(1992), 12-20], also partially improves a recent result of H. Karmakar and P. Sahoo [Results Math., (2018),73:98].


2021 ◽  
Vol 6 (10) ◽  
pp. 10485-10494
Author(s):  
Xiaomei Zhang ◽  
◽  
Xiang Chen ◽  

<abstract><p>Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.</p></abstract>


Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4287-4295 ◽  
Author(s):  
Bikash Chakraborty ◽  
Sudip Saha ◽  
Amit Pal ◽  
Jayanta Kamila

Let f be a transcendental meromorphic function defined in the complex plane C and k ? N. We consider the value distribution of the differential polynomial fq0(f(k))qk, where q0(?2), qk(?1) are integers. We obtain a quantitative estimation of the characteristic function T(r,f) in terms of N?(r, 1/fq0(f(k))qk-1). Our result generalizes the results obtained by Xu et al. (Math. Inequal. Appl., Vol. 14, PP. 93-100, 2011); Karmakar and Sahoo (Results Math., Vol. 73, 2018) for a particular class of transcendental meromorphic functions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zhaojun Wu ◽  
Jia Wu

Abstract Let f be a transcendental meromorphic function of finite order and c be a nonzero complex number. Define $\Delta _{c}f=f(z+c)-f(z)$ Δ c f = f ( z + c ) − f ( z ) . The authors investigate the existence on the fixed points of $\Delta _{c}f$ Δ c f . The results obtained in this paper may be viewed as discrete analogues on the existing theorem on the fixed points of $f'$ f ′ . The existing theorem on the fixed points of $\Delta _{c}f$ Δ c f generalizes the relevant results obtained by (Chen in Ann. Pol. Math. 109(2):153–163, 2013; Zhang and Chen in Acta Math. Sin. New Ser. 32(10):1189–1202, 2016; Cui and Yang in Acta Math. Sci. 33B(3):773–780, 2013) et al.


2019 ◽  
Vol 69 (5) ◽  
pp. 1037-1052
Author(s):  
Sujoy Majumder ◽  
Somnath Saha

Abstract In this paper we consider the situation when a power of a transcendental meromorphic function shares non-zero polynomials with derivative of it’s combination with it’s shift. Also we exhibit some examples to fortify the conditions of our results.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 87 ◽  
Author(s):  
Junfeng Xu ◽  
Shuichao Ye

In this study, the value distribution of the differential polynomial φ f 2 f ′ 2 − 1 is considered, where f is a transcendental meromorphic function, φ ( ≢ 0 ) is a small function of f by the reduced counting function. This result improves the existed theorems which obtained by Jiang (Bull Korean Math Soc 53: 365-371, 2016) and also give a quantitative inequality of φ f f ′ − 1 .


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2893-2906
Author(s):  
Sujoy Majumder ◽  
Somnath Saha

Let f be a transcendental meromorphic function of finite order with finitely many poles, c ? C\{0} and n,k ? N. Suppose fn(z)-Q1(z) and (fn(z+c))(k)- Q2(z) share (0,1) and f(z), f(z+c) share 0 CM. If n ? k + 1, then (fn(z+c))(k) ? Q2(z)/Q1(z)fn(z), where Q1, Q2 are polynomials with Q1Q2 ?/ 0. Furthermore, if Q1 = Q2, then f(z)=c1e?/n z, where c1 and ? are non-zero constants such that e?c = 1 and ?k = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.


Sign in / Sign up

Export Citation Format

Share Document