AbstractLet $$n \ge 4$$
n
≥
4
be a positive integer, $$\mathcal {F}$$
F
be a family of meromorphic functions in D and let $$a(z)(\not \equiv 0), b(z)$$
a
(
z
)
(
≢
0
)
,
b
(
z
)
be two holomorphic functions in D. If, for any function $$f \in \mathcal { F}$$
f
∈
F
, (1)$$f(z) \ne \infty $$
f
(
z
)
≠
∞
when $$a(z)=0$$
a
(
z
)
=
0
, (2) $$f'(z)-a(z)f^{n}(z)-b(z)$$
f
′
(
z
)
-
a
(
z
)
f
n
(
z
)
-
b
(
z
)
has at most one zero in D, then $$\mathcal {F}$$
F
is normal in D.