scholarly journals Non-homogeneous Square Functions on General Sets: Suppression and Big Pieces Methods

2017 ◽  
Vol 27 (4) ◽  
pp. 3176-3227
Author(s):  
Henri Martikainen ◽  
Mihalis Mourgoglou ◽  
Emil Vuorinen
Keyword(s):  
Author(s):  
Tuomas Orponen

AbstractI prove that closed n-regular sets $$E \subset {\mathbb {R}}^{d}$$ E ⊂ R d with plenty of big projections have big pieces of Lipschitz graphs. In particular, these sets are uniformly n-rectifiable. This answers a question of David and Semmes from 1993.


2014 ◽  
Vol 176 (4) ◽  
pp. 615-622 ◽  
Author(s):  
P. K. Ratnakumar ◽  
Saurabh Shrivastava
Keyword(s):  

2014 ◽  
Vol 81 (3) ◽  
pp. 319-374 ◽  
Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro ◽  
Lourdes Rodríguez-Mesa

2014 ◽  
Vol 57 (1) ◽  
pp. 17-82 ◽  
Author(s):  
TUOMAS P. HYTÖNEN ◽  
ANTTI V. VÄHÄKANGAS

AbstractWe extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.


2013 ◽  
Vol 193 (5) ◽  
pp. 1397-1430 ◽  
Author(s):  
J. J. Betancor ◽  
A. J. Castro ◽  
J. Curbelo ◽  
J. C. Fariña ◽  
L. Rodríguez-Mesa
Keyword(s):  

10.37236/811 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
J. Conde ◽  
J. Gimbert ◽  
J. Gonzàlez ◽  
J. M. Miret ◽  
R. Moreno

Almost Moore digraphs appear in the context of the degree/diameter problem as a class of extremal directed graphs, in the sense that their order is one less than the unattainable Moore bound $M(d,k)=1+d+\cdots +d^k$, where $d>1$ and $k>1$ denote the maximum out-degree and diameter, respectively. So far, the problem of their existence has only been solved when $d=2,3$ or $k=2$. In this paper, we prove that almost Moore digraphs of diameter $k=3$ do not exist for any degree $d$. The enumeration of almost Moore digraphs of degree $d$ and diameter $k=3$ turns out to be equivalent to the search of binary matrices $A$ fulfilling that $AJ=dJ$ and $I+A+A^2+A^3=J+P$, where $J$ denotes the all-one matrix and $P$ is a permutation matrix. We use spectral techniques in order to show that such equation has no $(0,1)$-matrix solutions. More precisely, we obtain the factorization in ${\Bbb Q}[x]$ of the characteristic polynomial of $A$, in terms of the cycle structure of $P$, we compute the trace of $A$ and we derive a contradiction on some algebraic multiplicities of the eigenvalues of $A$. In order to get the factorization of $\det(xI-A)$ we determine when the polynomials $F_n(x)=\Phi_n(1+x+x^2+x^3)$ are irreducible in ${\Bbb Q}[x]$, where $\Phi_n(x)$ denotes the $n$-th cyclotomic polynomial, since in such case they become 'big pieces' of $\det(xI-A)$. By using concepts and techniques from algebraic number theory, we prove that $F_n(x)$ is always irreducible in ${\Bbb Q}[x]$, unless $n=1,10$. So, by combining tools from matrix and number theory we have been able to solve a problem of graph theory.


Sign in / Sign up

Export Citation Format

Share Document