vector valued functions
Recently Published Documents


TOTAL DOCUMENTS

575
(FIVE YEARS 59)

H-INDEX

26
(FIVE YEARS 3)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Andriy Ivanovych Bandura ◽  
Tetyana Mykhailivna Salo ◽  
Oleh Bohdanovych Skaskiv

The present paper is devoted to the properties of entire vector-valued functions of bounded L-index in join variables, where L:Cn→R+n is a positive continuous function. For vector-valued functions from this class we prove some propositions describing their local properties. In particular, these functions possess the property that maximum of norm for some partial derivative at a skeleton of polydisc does not exceed norm of the derivative at the center of polydisc multiplied by some constant. The converse proposition is also true if the described inequality is satisfied for derivative in each variable.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Karsten Kruse

AbstractIn this paper we study the problem of extending functions with values in a locally convex Hausdorff space E over a field $$\mathbb {K}$$ K , which has weak extensions in a weighted Banach space $${\mathcal {F}}\nu (\Omega ,\mathbb {K})$$ F ν ( Ω , K ) of scalar-valued functions on a set $$\Omega$$ Ω , to functions in a vector-valued counterpart $$\mathcal {F}\nu (\Omega ,E)$$ F ν ( Ω , E ) of $${\mathcal {F}}\nu (\Omega ,\mathbb {K})$$ F ν ( Ω , K ) . Our findings rely on a description of vector-valued functions as continuous linear operators and extend results of Frerick, Jordá and Wengenroth. As an application we derive weak-strong principles for continuously partially differentiable functions of finite order and vector-valued versions of Blaschke’s convergence theorem for several spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohammed K. A. Kaabar ◽  
Francisco Martínez ◽  
Inmaculada Martínez ◽  
Zailan Siri ◽  
Silvestre Paredes

New investigation on the conformable version (CoV) of multivariable calculus is proposed. The conformable derivative (CoD) of a real-valued function (RVF) of several variables (SVs) and all related properties are investigated. An extension to vector-valued functions (VVFs) of several real variables (SRVs) is studied in this work. The CoV of chain rule (CR) for functions of SVs is also introduced. At the end, the CoV of implicit function theorem (IFThm) for SVs is established. All results in this work can be potentially applied in studying various modeling scenarios in physical oceanography such as Stommel’s box model of thermohaline circulation and other related models where all our results can provide a new analysis and computational tool to investigate these models or their modified formulations.


Author(s):  
Karsten Kruse

AbstractThis paper is dedicated to the question of surjectivity of the Cauchy-Riemann operator $$\overline{\partial }$$ ∂ ¯ on spaces $${\mathcal {E}}{\mathcal {V}}(\varOmega ,E)$$ E V ( Ω , E ) of $${\mathcal {C}}^{\infty }$$ C ∞ -smooth vector-valued functions whose growth on strips along the real axis with holes K is induced by a family of continuous weights $${\mathcal {V}}$$ V . Vector-valued means that these functions have values in a locally convex Hausdorff space E over $${\mathbb {C}}$$ C . We derive a counterpart of the Grothendieck-Köthe-Silva duality $${\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\cong {\mathscr {A}}(K)$$ O ( C \ K ) / O ( C ) ≅ A ( K ) with non-empty compact $$K\subset {\mathbb {R}}$$ K ⊂ R for weighted holomorphic functions. We use this duality and splitting theory to prove the surjectivity of $$\overline{\partial }:{\mathcal {E}} {\mathcal {V}}(\varOmega ,E)\rightarrow {\mathcal {E}}{\mathcal {V}} (\varOmega ,E)$$ ∂ ¯ : E V ( Ω , E ) → E V ( Ω , E ) for certain E. This solves the smooth (holomorphic, distributional) parameter dependence problem for the Cauchy-Riemann operator on $${\mathcal {E}}{\mathcal {V}}(\varOmega ,{\mathbb {C}})$$ E V ( Ω , C ) .


2021 ◽  
Vol 55 (2) ◽  
pp. 146-161
Author(s):  
A. O. Muzychuk

The Laguerre transform is applied to the convolution product of functions of a real argument (over the time axis) with values in Hilbert spaces. The main results have been obtained by establishing a relationship between the Laguerre and Laplace transforms over the time variable with respect to the elements of Lebesgue weight  spaces. This relationship is built using a special generating function. The obtained dependence makes it  possible to extend the known properties of the Laplace transform to the case of the Laguerre transform. In particular, this approach concerns the transform of a convolution of functions. The Laguerre transform is determined by a system of Laguerre functions, which forms an orthonormal basis in the weighted Lebesgue space. The inverse Laguerre transform is constructed as a Laguerre series. It is proven that the direct and the inverse Laguerre transforms are mutually inverse operators that implement an isomorphism of square-integrable functions and infinite squares-summable sequences. The concept of a q-convolution in spaces of sequences is introduced as a discrete analogue of the convolution products of functions. Sufficient conditions for the existence of convolutions in the weighted Lebesgue spaces and in the corresponding spaces of sequences are investigated. For this purpose, analogues of Young’s inequality for such spaces are proven. The obtained results can be used to construct solutions of evolutionary problems and time-dependent boundary integral equations.


Sign in / Sign up

Export Citation Format

Share Document