Structural optimization of hollow-section steel trusses by differential evolution algorithm

2016 ◽  
Vol 16 (2) ◽  
pp. 411-423 ◽  
Author(s):  
Alessandra Fiore ◽  
Giuseppe Carlo Marano ◽  
Rita Greco ◽  
Erika Mastromarino
Author(s):  
Nguyen Tran Hieu ◽  
Nguyen Quoc Cuong ◽  
Vu Anh Tuan

A steel truss is a preferred solution in large-span roof structures due to its good attributes such as lightweight, durability. However, designing steel trusses is a challenging task for engineers due to a large number of design variables. Recently, optimization-based design approaches have demonstrated the great potential to effectively support structural engineers in finding the optimal designs of truss structures. This paper aims to use the AdaBoost-DE algorithm for optimizing steel roof trusses. The AdaBoost-DE employed in this study is a hybrid algorithm in which the AdaBoost classification technique is used to enhance the performance of the Differential Evolution algorithm by skipping unnecessary fitness evaluations during the optimization process. An example of a duo-pitch steel roof truss with a span of 24 meters is carried out. The result shows that the AdaBoost-DE achieves the same optimal design as the original DE algorithm, but reduces the computational cost by approximately 36%.


2009 ◽  
Vol 29 (4) ◽  
pp. 1046-1047
Author(s):  
Song-shun ZHANG ◽  
Chao-feng LI ◽  
Xiao-jun WU ◽  
Cui-fang GAO

2013 ◽  
Vol 8 (999) ◽  
pp. 1-6
Author(s):  
Chuii Khim Chong ◽  
Mohd Saberi Mohamad ◽  
Safaai Deris ◽  
Mohd Shahir Shamsir ◽  
Lian En Chai ◽  
...  

Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


Sign in / Sign up

Export Citation Format

Share Document