scholarly journals On the classification of Kähler–Ricci solitons on Gorenstein del Pezzo surfaces

2017 ◽  
Vol 4 (1) ◽  
pp. 137-161 ◽  
Author(s):  
Jacob Cable ◽  
Hendrik Süß
2019 ◽  
Vol 30 (12) ◽  
pp. 1950068
Author(s):  
Andrey Trepalin

Let [Formula: see text] be any field of characteristic zero, [Formula: see text] be a del Pezzo surface and [Formula: see text] be a finite subgroup in [Formula: see text]. In this paper, we study when the quotient surface [Formula: see text] can be non-rational over [Formula: see text]. Obviously, if there are no smooth [Formula: see text]-points on [Formula: see text] then it is not [Formula: see text]-rational. Therefore, under assumption that the set of smooth [Formula: see text]-points on [Formula: see text] is not empty we show that there are few possibilities for non-[Formula: see text]-rational quotients. The quotients of del Pezzo surfaces of degree [Formula: see text] and greater are considered in the author’s previous papers. In this paper, we study the quotients of del Pezzo surfaces of degree [Formula: see text]. We show that they can be non-[Formula: see text]-rational only for the trivial group or cyclic groups of order [Formula: see text], [Formula: see text] and [Formula: see text]. For the trivial group and the group of order [Formula: see text], we show that both [Formula: see text] and [Formula: see text] are not [Formula: see text]-rational if the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. For the groups of order [Formula: see text] and [Formula: see text], we construct examples of both [Formula: see text]-rational and non-[Formula: see text]-rational quotients of both [Formula: see text]-rational and non-[Formula: see text]-rational del Pezzo surfaces of degree [Formula: see text] such that the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. As a result of complete classification of non-[Formula: see text]-rational quotients of del Pezzo surfaces we classify surfaces that are birationally equivalent to quotients of [Formula: see text]-rational surfaces, and obtain some corollaries concerning fields of invariants of [Formula: see text].


2017 ◽  
Vol 69 (1) ◽  
pp. 163-225 ◽  
Author(s):  
Kento FUJITA ◽  
Kazunori YASUTAKE

Author(s):  
Pedro Montero ◽  
Eleonora Anna Romano

Abstract We find a characterization for Fano 4-folds $X$ with Lefschetz defect $\delta _{X}=3$: besides the product of two del Pezzo surfaces, they correspond to varieties admitting a conic bundle structure $f\colon X\to Y$ with $\rho _{X}-\rho _{Y}=3$. Moreover, we observe that all of these varieties are rational. We give the list of all possible targets of such contractions. Combining our results with the classification of toric Fano $4$-folds due to Batyrev and Sato we provide explicit examples of Fano conic bundles from toric $4$-folds with $\delta _{X}=3$.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350158
Author(s):  
NIELS LUBBES

In this paper, we consider the classification of singularities [P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, II, III, Proc. Camb. Philos. Soc.30 (1934) 453–491] and real structures [C. T. C. Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math.1987(375/376) (1987) 47–66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond to root subsystems. We present an algorithm which computes the classification of these root subsystems. We represent equivalence classes of root subsystems by unique labels. These labels allow us to construct examples of weak Del Pezzo surfaces with the corresponding singularity configuration. Equivalence classes of real structures of weak Del Pezzo surfaces are also represented by root subsystems. We present an algorithm which computes the classification of real structures. This leads to an alternative proof of the known classification for Del Pezzo surfaces and extends this classification to singular weak Del Pezzo surfaces. As an application we classify families of real conics on cyclides.


Author(s):  
Matilde Manzaroli

Abstract The study of the topology of real algebraic varieties dates back to the work of Harnack, Klein, and Hilbert in the 19th century; in particular, the isotopy-type classification of real algebraic curves in real toric surfaces is a classical subject that has undergone considerable evolution. On the other hand, not much is known for more general ambient surfaces. We take a step forward in the study of topological-type classification of real algebraic curves on non-toric surfaces focusing on real del Pezzo surfaces of degree 1 and 2 with multi-components real part. We use degeneration methods and real enumerative geometry in combination with variations of classical methods to give obstructions to the existence of topological-type classes realized by real algebraic curves and to give constructions of real algebraic curves with prescribed topology.


Sign in / Sign up

Export Citation Format

Share Document