alternative proof
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 89)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Diogo Diniz ◽  
Claudemir Fidelis ◽  
Plamen Koshlukov

Abstract Let $F$ be an infinite field of positive characteristic $p > 2$ and let $G$ be a group. In this paper, we study the graded identities satisfied by an associative algebra equipped with an elementary $G$ -grading. Let $E$ be the infinite-dimensional Grassmann algebra. For every $a$ , $b\in \mathbb {N}$ , we provide a basis for the graded polynomial identities, up to graded monomial identities, for the verbally prime algebras $M_{a,b}(E)$ , as well as their tensor products, with their elementary gradings. Moreover, we give an alternative proof of the fact that the tensor product $M_{a,b}(E)\otimes M_{r,s}(E)$ and $M_{ar+bs,as+br}(E)$ are $F$ -algebras which are not PI equivalent. Actually, we prove that the $T_{G}$ -ideal of the former algebra is contained in the $T$ -ideal of the latter. Furthermore, the inclusion is proper. Recall that it is well known that these algebras satisfy the same multilinear identities and hence in characteristic 0 they are PI equivalent.


2022 ◽  
Vol 99 ◽  
pp. 103406
Author(s):  
Laura Colmenarejo ◽  
Joscha Diehl ◽  
Miruna-Ştefana Sorea

Author(s):  
Jinhak Kim ◽  
Mohit Tawarmalani ◽  
Jean-Philippe P. Richard

We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 581
Author(s):  
Seth T. Merkel ◽  
Emily J. Pritchett ◽  
Bryan H. Fong

We show that the Randomized Benchmarking (RB) protocol is a convolution amenable to Fourier space analysis. By adopting the mathematical framework of Fourier transforms of matrix-valued functions on groups established in recent work from Gowers and Hatami \cite{GH15}, we provide an alternative proof of Wallman's \cite{Wallman2018} and Proctor's \cite{Proctor17} bounds on the effect of gate-dependent noise on randomized benchmarking. We show explicitly that as long as our faulty gate-set is close to the targeted representation of the Clifford group, an RB sequence is described by the exponential decay of a process that has exactly two eigenvalues close to one and the rest close to zero. This framework also allows us to construct a gauge in which the average gate-set error is a depolarizing channel parameterized by the RB decay rates, as well as a gauge which maximizes the fidelity with respect to the ideal gate-set.


2021 ◽  
Author(s):  
S. Gadtia ◽  
S. K. Padhan

Abstract Heron’s cubic root iteration formula conjectured by Wertheim is proved and extended for any odd order roots. Some possible proofs are suggested for the roots of even order. An alternative proof of Heron’s general cubic root iterative method is explained. Further, Lagrange’s interpolation formula for nth root of a number is studied and found that Al-Samawal’s and Lagrange’s method are equivalent. Again, counterexamples are discussed to justify the effectiveness of the present investigations.


Author(s):  
Othman Echi

Let [Formula: see text] be a topological space. By the Skula topology (or the [Formula: see text]-topology) on [Formula: see text], we mean the topology [Formula: see text] on [Formula: see text] with basis the collection of all [Formula: see text]-locally closed sets of [Formula: see text], the resulting space [Formula: see text] will be denoted by [Formula: see text]. We show that the following results hold: (1) [Formula: see text] is an Alexandroff space if and only if the [Formula: see text]-reflection [Formula: see text] of [Formula: see text] is a [Formula: see text]-space. (2) [Formula: see text] is a Noetherian space if and only if [Formula: see text] is finite. (3) If we denote by [Formula: see text] the Alexandroff extension of [Formula: see text], then [Formula: see text] if and only if [Formula: see text] is a Noetherian quasisober space. We also give an alternative proof of a result due to Simmons concerning the iterated Skula spaces, namely, [Formula: see text]. A space is said to be clopen if its open sets are also closed. In [R. E. Hoffmann, Irreducible filters and sober spaces, Manuscripta Math. 22 (1977) 365–380], Hoffmann introduced a refinement clopen topology [Formula: see text] of [Formula: see text]: The indiscrete components of [Formula: see text] are of the form [Formula: see text], where [Formula: see text] and [Formula: see text] is the intersection of all open sets of [Formula: see text] containing [Formula: see text] (equivalently, [Formula: see text]). We show that [Formula: see text]


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 552
Author(s):  
Shin-Liang Chen ◽  
Huan-Yu Ku ◽  
Wenbin Zhou ◽  
Jordi Tura ◽  
Yueh-Nan Chen

Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party contains a pair of anti-commuting qubit observables. As a consequence, the other party automatically verifies the set of states remotely steered, namely the "assemblage", is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, or if one does not care about self-testing the state or measurements, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called "robust self-testing of steerable quantum assemblages". In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled two-qubit states proposed by Bowles et al., and 2) that it can be used to verify all non-entanglement-breaking qubit channels with fewer assumptions compared with the work of Rosset et al.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sayantani Bhattacharyya ◽  
Prateksh Dhivakar ◽  
Anirban Dinda ◽  
Nilay Kundu ◽  
Milan Patra ◽  
...  

Abstract We construct a proof of the second law of thermodynamics in an arbitrary diffeomorphism invariant theory of gravity working within the approximation of linearized dynamical fluctuations around stationary black holes. We achieve this by establishing the existence of an entropy current defined on the horizon of the dynamically perturbed black hole in such theories. By construction, this entropy current has non-negative divergence, suggestive of a mechanism for the dynamical black hole to approach a final equilibrium configuration via entropy production as well as the spatial flow of it on the null horizon. This enables us to argue for the second law in its strongest possible form, which has a manifest locality at each space-time point. We explicitly check that the form of the entropy current that we construct in this paper exactly matches with previously reported expressions computed considering specific four derivative theories of higher curvature gravity. Using the same set up we also provide an alternative proof of the physical process version of the first law applicable to arbitrary higher derivative theories of gravity.


Author(s):  
Heiko Knospe ◽  
Lawrence C. Washington

AbstractWe study p-adic L-functions $$L_p(s,\chi )$$ L p ( s , χ ) for Dirichlet characters $$\chi $$ χ . We show that $$L_p(s,\chi )$$ L p ( s , χ ) has a Dirichlet series expansion for each regularization parameter c that is prime to p and the conductor of $$\chi $$ χ . The expansion is proved by transforming a known formula for p-adic L-functions and by controlling the limiting behavior. A finite number of Euler factors can be factored off in a natural manner from the p-adic Dirichlet series. We also provide an alternative proof of the expansion using p-adic measures and give an explicit formula for the values of the regularized Bernoulli distribution. The result is particularly simple for $$c=2$$ c = 2 , where we obtain a Dirichlet series expansion that is similar to the complex case.


Sign in / Sign up

Export Citation Format

Share Document