The monomethylethanolamine- and dimethylethanolamine-base exchange reactions of a rat-brain microsomal fraction

Author(s):  
Julian N. Kanfer
1980 ◽  
Vol 58 (12) ◽  
pp. 1370-1380 ◽  
Author(s):  
Julian N. Kanfer

The base exchange enzymes and phospholipase D represent a group of enzymes which alter the polar portion of phospholipids. The base exchange enzymes provide a mechanism of inter-converting different species of phospholipids whereas phospholipase D hydrolyzes these phospholipids to phosphatidic acid. Although the occurrence of these activities is widespread, this article is restricted to a description of the mammalian enzymes.Originally it was believed that these catalytic activities resided in a single enzyme. As a result of successes in partial purifications and separations it is clear that separate enzymes exist for the exchange of serine, for the exchange of choline, and for the exchange of ethanolamine resulting in their appearance in the corresponding phospholipid. These enzyme activities are not a reflection of phospholipase D action. Conversely, a partially purified phospholipase D from rat brain was devoid of detectable base exchange activity. However, this enzyme preparation possessed transphosphatidylation activity producing phosphatidylglycerol from glycerol and lecithin.These enzymes are presumed to be functionally significant for cellular homeostasis; however, strong evidence supporting this contention is unavailable. The base exchange enzymes appear to be concentrated in the "microsomal" fraction of tissues. The choline base exchange enzyme is located on the cytoplasmic surface while the serine and ethanolamine base exchange enzymes are located on the luminal surface of the endoplasmic reticulum of rat brain tissue. The lipid environments in which the individual enzymes reside are also distinctly different suggesting that their in situ domains within the microsomal membrane are dissimilar. Therefore it appears that the enzymes are distinctly separate catalytic entities. They also are in topographically different locations on the microsomal membrane and reside in different lipid environments as well. These observations would imply functionally distinct roles for the separate enzymes. Evidence is available which suggests that their existence might be demonstrable in vivo.


Author(s):  
P. Orlando ◽  
G. Arienti ◽  
P. Saracino ◽  
L. Corazzi ◽  
P. Massari ◽  
...  

1974 ◽  
Vol 52 (6) ◽  
pp. 469-482 ◽  
Author(s):  
M. O. Marshall ◽  
M. Kates

Pathways for biosynthesis of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), in spinach leaves have been studied both in vivo (whole leaves and leaf slices) and in vitro (cell-free leaf fractions). Biosynthesis of PS was shown to occur by the action of a particle-bound CDP-diglyceride: serine phosphatidyltransferase, and PE by the action of a PS-decarboxylase localized in the 100 000 × g supernatant fraction. PE was also formed by the operation of the CDP-ethanolamine:diglyceride phosphorylethanolamine transferase, localized in the microsomal fraction. The presence of ethanolamine kinase required for formation of phosphorylethanolamine was demonstrated in vitro, but not the presence of CTP:phosphorylethanolamine cytidyltransferase; however, the latter is presumed present on the basis of in vivo results. Operation of the methylation pathway for biosynthesis of PC was established in vivo, and direct methylation of phosphatidyl-N-methylethanolamine to phosphatidyl-N,N-dimethylethanolamine (PE-diMe) and of PE-diME to PC by S-adenosylmethionine was demonstrated with a particulate enzyme system localized in the microsomal fraction; direct methylation of PE itself could not be shown in this system. PC was also synthesized by the CDP-choline:diglyceride phosphorylcholine transferase system localized in the microsomal fraction. Synthesis of PE and PC by Ca2+-stimulated exchange reactions with ethanolamine and choline, respectively, could be demonstrated, but at low rates. However, no synthesis of PS by exchange reactions with serine could be detected.


Sign in / Sign up

Export Citation Format

Share Document