Activation of the NMDA receptor: a correlate in the dentate gyrus field potential and its relationship to long-term potentiation and kindling

1991 ◽  
Vol 556 (2) ◽  
pp. 226-239 ◽  
Author(s):  
R.J. Racine ◽  
K.-A. Moore ◽  
S. Wicks
1994 ◽  
Vol 72 (6) ◽  
pp. 3017-3022 ◽  
Author(s):  
H. Gozlan ◽  
D. Diabira ◽  
P. Chinestra ◽  
Y. Ben-Ari

1. The effects of redox reagents, 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and tris(carboxyethyl)phosphine (TCEP), on anoxia-induced long-term potentiation (LTP) were investigated in CA1 hippocampal neurons using extracellular recording techniques. Experiments were performed in the presence of 0.1 mM MgCl2 and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to pharmacologically isolate N-methyl-D-aspartate (NMDA) receptor-mediated responses. 2. DTNB (200 microM), a thiol oxidizing reagent, reduces by 52 +/- 9% (mean +/- SE) (n = 9/9) NMDA-receptor field potentials evoked by electrical stimulation of Schaffer collaterals and this effect could not be reversed by extensive washing. Nearly the same reduction of the initial response was obtained with different concentrations of DTNB (100 and 500 microM), but the time required to reach the maximal inhibition was concentration-dependent. 3. In keeping with an earlier study oxygen and glucose deprivation for 2-3 min induced a long-term potentiation (LTP) of the NMDA receptor response (+65 +/- 16%, n = 4/6). This potentiation was reversed by DTNB (100-500 microM) (-47 +/- 18%; n = 4/4) and the initial LTP could not be restored upon extensive washing of the drug. 4. TCEP (200 microM), a reagent which reduces S-S bond, amplified the electrically evoked NMDA-receptor EPSP (+27 +/- 12%; n = 3). In addition, TCEP (200 microM), nearly completely reversed the effect of DTNB (200 microM) on anoxia-induced LTP (+56 +/- 19%; n = 3/3). Preliminary results also indicate that TCEP occlude anoxic-LTP (n = 3/4). 5. Following DTNB (200 microM) treatment, oxygen and glucose deprivation did not generate anoxic LTP and extensive washing did not restore a potentiated NMDA field potential. 6. These observations strongly suggest that the redox site of the NMDA receptor is involved in the induction and the maintenance of the anoxic LTP of the NMDA receptor-mediated response in CA1.


1987 ◽  
Vol 401 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Edward W. Kairiss ◽  
Wickliffe C. Abraham ◽  
David K. Bilkey ◽  
Graham V. Goddard

2005 ◽  
Vol 565 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Franco A. Taverna ◽  
John Georgiou ◽  
Robert J. McDonald ◽  
Nancy S. Hong ◽  
Alexander Kraev ◽  
...  

2009 ◽  
Vol 65 ◽  
pp. S83
Author(s):  
Noriaki Ohkawa ◽  
Yoshito Saitoh ◽  
Eri Tokunaga ◽  
Toshio Kitamura ◽  
Kaoru Inokuchi

Sign in / Sign up

Export Citation Format

Share Document