Receptor Antagonists
Recently Published Documents


TOTAL DOCUMENTS

11334
(FIVE YEARS 1790)

H-INDEX

137
(FIVE YEARS 28)

2021 ◽  
Vol 22 (18) ◽  
pp. 10161
Author(s):  
Tapan Behl ◽  
Piyush Madaan ◽  
Aayush Sehgal ◽  
Sukhbir Singh ◽  
Neelam Sharma ◽  
...  

One of the utmost frequently emerging neurodegenerative diseases, Parkinson’s disease (PD) must be comprehended through the forfeit of dopamine (DA)-generating nerve cells in the substantia nigra pars compacta (SN-PC). The etiology and pathogenesis underlying the emergence of PD is still obscure. However, expanding corroboration encourages the involvement of genetic and environmental factors in the etiology of PD. The destruction of numerous cellular components, namely oxidative stress, ubiquitin-proteasome system (UPS) dysfunction, autophagy-lysosome system dysfunction, neuroinflammation and programmed cell death, and mitochondrial dysfunction partake in the pathogenesis of PD. Present-day pharmacotherapy can alleviate the manifestations, but no therapy has been demonstrated to cease disease progression. Peroxisome proliferator-activated receptors (PPARs) are ligand-directed transcription factors pertaining to the class of nuclear hormone receptors (NHR), and are implicated in the modulation of mitochondrial operation, inflammation, wound healing, redox equilibrium, and metabolism of blood sugar and lipids. Numerous PPAR agonists have been recognized to safeguard nerve cells from oxidative destruction, inflammation, and programmed cell death in PD and other neurodegenerative diseases. Additionally, various investigations suggest that regular administration of PPAR-activating non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indomethacin), and leukotriene receptor antagonists (montelukast) were related to the de-escalated evolution of neurodegenerative diseases. The present review elucidates the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing PD. Existing articles up to the present were procured through PubMed, MEDLINE, etc., utilizing specific keywords spotlighted in this review. Furthermore, the authors aim to provide insight into the neuroprotective actions of PPAR agonists by outlining the pharmacological mechanism. As a conclusion, PPAR agonists exhibit neuroprotection through modulating the expression of a group of genes implicated in cellular survival pathways, and may be a propitious target in the therapy of incapacitating neurodegenerative diseases like PD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peixin Li ◽  
Hengli Zhao ◽  
Jianyu Zhang ◽  
Yunshan Ning ◽  
Yan Tu ◽  
...  

The new guidelines classify heart failure (HF) into three subgroups based on the ejection fraction (EF): HF with reduced EF (HFrEF), HF with mid-range EF (HFmrEF), and HF with preserved EF (HFpEF). The new guidelines regarding the declaration of HFmrEF as a unique phenotype have achieved the goal of stimulating research on the basic characteristics, pathophysiology, and treatment of HF patients with a left ventricular EF of 40–49%. Patients with HFmrEF have more often been described as an intermediate population between HFrEF and HFpEF patients; however, with regard to etiology and clinical indicators, they are more similar to the HFrEF population. Concerning clinical prognosis, they are closer to HFpEF because both populations have a good prognosis and quality of life. Meanwhile, growing evidence indicates that HFmrEF and HFpEF show heterogeneity in presentation and pathophysiology, and the emergence of this heterogeneity often plays a crucial role in the prognosis and treatment of the disease. To date, the exact mechanisms and effective treatment strategies of HFmrEF and HFpEF are still poorly understood, but some of the current evidence, from observational studies and post-hoc analyses of randomized controlled trials, have shown that patients with HFmrEF may benefit more from HFrEF treatment strategies, such as beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sacubitril/valsartan. This review summarizes available data from current clinical practice and mechanistic studies in terms of epidemiology, etiology, clinical indicators, mechanisms, and treatments to discuss the potential association between HFmrEF and HFpEF patients.


Author(s):  
Su E Yeoh ◽  
Pooja Dewan ◽  
Matteo Serenelli ◽  
João Pedro Ferreira ◽  
Bertram Pitt ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5657
Author(s):  
Jens F. Rehfeld

The classic gut hormone cholecystokinin (CCK) and its CCK2-receptor are expressed in almost all regions of the brain. This widespread expression makes CCK by far the most abundant peptidergic transmitter system in the brain. This CNS-ubiquity has, however, complicated the delineation of the roles of CCK peptides in normal brain functions and neuropsychiatric diseases. Nevertheless, the common panic disorder disease is apparently associated with CCK in the brain. Thus, the C-terminal tetrapeptide fragment of CCK (CCK-4) induces, by intravenous administration in a dose-related manner, panic attacks that are similar to the endogenous attacks in panic disorder patients. This review describes the history behind the discovery of the panicogenic effect of CCK-4. Subsequently, the review discusses three unsettled questions about the involvement of cerebral CCK in the pathogenesis of anxiety and panic disorder, including therapeutic attempts with CCK2-receptor antagonists.


2021 ◽  
Author(s):  
Andrew K. Moran ◽  
Thomas P. Eiting ◽  
Matt Wachowiak

In the mammalian olfactory bulb (OB), mitral/tufted (MT) cells respond to odorant inhalation with diverse temporal patterns that are thought to encode odor information. Much of this diversity is already apparent at the level of glutamatergic input to MT cells, which receive direct, monosynaptic excitatory input from olfactory sensory neurons (OSNs) as well as multisynaptic excitatory drive via glutamatergic interneurons. Both pathways are also subject to modulation by inhibitory circuits in the glomerular layer of the OB. To understand the role of direct OSN input versus postsynaptic OB circuit mechanisms in shaping diverse dynamics of glutamatergic drive to MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized mice while blocking multisynaptic excitatory drive with ionotropic glutamate receptor antagonists and blocking presynaptic modulation of glutamate release from OSNs with GABAB receptor antagonists. GABAB receptor blockade increased the magnitude of inhalation-linked glutamate transients onto MT cell apical dendrites without altering their inhalation-linked dynamics, confirming that presynaptic inhibition impacts the gain of OSN inputs to the OB. Surprisingly, blockade of multisynaptic excitation only modestly impacted glutamatergic input to MT cells, causing a slight reduction in the amplitude of inhalation-linked glutamate transients in response to low odorant concentrations and no change in the dynamics of each transient. Postsynaptic blockade also modestly impacted glutamate dynamics over a slower timescale, mainly by reducing adaptation of the glutamate response across multiple inhalations of odorant. These results suggest that direct glutamatergic input from OSNs provides the bulk of excitatory drive to MT cells, and that diversity in the dynamics of this input may be a primary determinant of the temporal diversity in MT cell responses that underlies odor representations at this stage.


2021 ◽  
Vol 22 (18) ◽  
pp. 9995
Author(s):  
Wiktoria Baran ◽  
Julia Krzemińska ◽  
Magdalena Szlagor ◽  
Magdalena Wronka ◽  
Ewelina Młynarska ◽  
...  

Mineralocorticoid receptor antagonists (MRA) are drugs with a potentially broad spectrum of action. They have been reported to have healing effects in many diseases, such as chronic heart failure, hypertension, or nephrotic syndrome. Numerous studies suggest that mineralocorticoid receptor activation is pathogenic and a progression factor of chronic kidney disease (CKD); however, results of studies on the use of MRA in the treatment of CKD are inconclusive. Current guidelines recommend against the use of MRA in patients with advanced CKD. Although, there is growing interest on their use in this population due to treatment benefits. In this review, we summarize studies which were purposed to evaluate the impact of MRA therapy on CKD patients. Despite many benefits of this treatment e.g., reducing cardiovascular mortality or alleviating proteinuria, steroidal MRA (such as spironolactone or eplerenone) have a low safety profile. They often lead to hyperkalemia complications which are dangerous in patients with CKD, and diabetic nephropathy, especially in hemodialysis patients. Studies on recently developed nonsteroidal MRA showed that they have fewer side effects. In our review, we discuss steroidal and nonsteroidal MRA treatment effects on the estimated glomerular filtration rate (eGFR), proteinuria, the cardiovascular system, and hyperkalemia in CKD patients. We present new content and recent publications in this field.


2021 ◽  
Vol 118 (38) ◽  
pp. e2108281118
Author(s):  
Aditya S. Vaidya ◽  
Francis C. Peterson ◽  
James Eckhardt ◽  
Zenan Xing ◽  
Sang-Youl Park ◽  
...  

Abscisic acid (ABA) is a key plant hormone that mediates both plant biotic and abiotic stress responses and many other developmental processes. ABA receptor antagonists are useful for dissecting and manipulating ABA’s physiological roles in vivo. We set out to design antagonists that block receptor–PP2C interactions by modifying the agonist opabactin (OP), a synthetically accessible, high-affinity scaffold. Click chemistry was used to create an ∼4,000-member library of C4-diversified opabactin derivatives that were screened for receptor antagonism in vitro. This revealed a peptidotriazole motif shared among hits, which we optimized to yield antabactin (ANT), a pan-receptor antagonist. An X-ray crystal structure of an ANT–PYL10 complex (1.86 Å) reveals that ANT’s peptidotriazole headgroup is positioned to sterically block receptor–PP2C interactions in the 4′ tunnel and stabilizes a noncanonical closed-gate receptor conformer that partially opens to accommodate ANT binding. To facilitate binding-affinity studies using fluorescence polarization, we synthesized TAMRA–ANT. Equilibrium dissociation constants for TAMRA–ANT binding to Arabidopsis receptors range from ∼400 to 1,700 pM. ANT displays improved activity in vivo and disrupts ABA-mediated processes in multiple species. ANT is able to accelerate seed germination in Arabidopsis, tomato, and barley, suggesting that it could be useful as a germination stimulant in species where endogenous ABA signaling limits seed germination. Thus, click-based diversification of a synthetic agonist scaffold allowed us to rapidly develop a high-affinity probe of ABA–receptor function for dissecting and manipulating ABA signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myung Jin Song ◽  
Seok Kim ◽  
Dachung Boo ◽  
Changhyun Park ◽  
Sooyoung Yoo ◽  
...  

AbstractProton pump inhibitors (PPIs), followed by histamine 2 receptor antagonists (H2RAs), are the most commonly used drugs to prevent gastrointestinal bleeding in critically ill patients through stress ulcer prophylaxis. The relative efficacy and drug-related adverse events of PPIs and H2RAs remain unclear. In this retrospective, observational, comparative cohort study, PPIs and H2RAs for stress ulcer prophylaxis in critically ill patients were compared using a common data model. After propensity matching, 935 patients from each treatment group (PPI or H2RA) were selected. The PPI group had a significantly higher 90-day mortality than the H2RA group (relative risk: 1.28; P = 0.01). However, no significant inter-group differences in the risk of clinically important gastrointestinal bleeding were observed. Moreover, there were no significant differences between the groups concerning the risk of pneumonia or Clostridioides difficile infection, which are known potential adverse events related to these drugs. Subgroup analysis of patients with high disease severity were consistent with those of the total propensity score-matched population. These findings do not support the current recommendations, which prefer PPIs for gastrointestinal bleeding prophylaxis in the intensive care unit.


2021 ◽  
Vol 11 (9) ◽  
pp. 1211
Author(s):  
Yinyi Xiong ◽  
Chae-Seok Lim

Alzheimer’s disease (AD), the most common neurodegenerative disease, is characterized by progressive cognitive impairment. The deposition of amyloid beta (Aβ) and hyperphosphorylated tau is considered the hallmark of AD pathology. Many therapeutic approaches such as Food and Drug Administration-approved cholinesterase inhibitors and N–methyl–D–aspartate receptor antagonists have been used to intervene in AD pathology. However, current therapies only provide limited symptomatic relief and are ineffective in preventing AD progression. Cannabidiol (CBD), a phytocannabinoid devoid of psychoactive responses, provides neuroprotective effects through both cannabinoid and noncannabinoid receptors. Recent studies using an AD mouse model have suggested that CBD can reverse cognitive deficits along with Aβ-induced neuroinflammatory, oxidative responses, and neuronal death. Furthermore, CBD can reduce the accumulation of Aβ and hyperphosphorylation of tau, suggesting the possibility of delaying AD progression. Particularly, the noncannabinoid receptor, peroxisome proliferator-activated receptor gamma, has been suggested to be involved in multiple functions of CBD. Therefore, understanding the underlying mechanisms of CBD is necessary for intervening in AD pathology in depth and for the translation of preclinical studies into clinical settings. In this review, we summarize recent studies on the effect of CBD in AD and suggest problems to be overcome for the therapeutic use of CBD.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5580
Author(s):  
Mayya P. Razgonova ◽  
Alexander M. Zakharenko ◽  
Elena I. Gordeeva ◽  
Olesya Yu. Shoeva ◽  
Elena V. Antonova ◽  
...  

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Sign in / Sign up

Export Citation Format

Share Document