A perturbative correction to restricted open shell configuration interaction with single substitutions for excited states of radicals

1995 ◽  
Vol 246 (1-2) ◽  
pp. 114-121 ◽  
Author(s):  
Martin Head-Gordon ◽  
David Maurice ◽  
Manabu Oumi
Author(s):  
Katherine J. Oosterbaan ◽  
Alec F. White ◽  
Diptarka Hait ◽  
Martin Head-Gordon

<div>In this paper, we investigate different non-orthogonal generalizations of the configuration interaction with single substitutions (CIS) method for the calculation of core-excited states. Fully non-orthogonal CIS (NOCIS) has been described previously for singlets and doublets and this paper reports the extension to triplet molecules. In addition to NOCIS, we present a novel method, 1C-NOCIS(1C-NOCIS), for open-shell molecules which is intermediate between NOCIS and the static exchange approximation (STEX). We explore this hierarchy of spin-pure methods for singlet, doublet, and triplet molecules and conclude that, while NOCIS provides the best results and preserves the spatial symmetry of the wavefunction, 1C-NOCIS retains much of the accuracy of NOCIS at a dramatically reduced cost. For molecules with closed-shell ground states, STEX and 1C-NOCIS are identical.</div>


2019 ◽  
Author(s):  
Katherine J. Oosterbaan ◽  
Alec F. White ◽  
Diptarka Hait ◽  
Martin Head-Gordon

<div>In this paper, we investigate different non-orthogonal generalizations of the configuration interaction with single substitutions (CIS) method for the calculation of core-excited states. Fully non-orthogonal CIS (NOCIS) has been described previously for singlets and doublets and this paper reports the extension to triplet molecules. In addition to NOCIS, we present a novel method, 1C-NOCIS(1C-NOCIS), for open-shell molecules which is intermediate between NOCIS and the static exchange approximation (STEX). We explore this hierarchy of spin-pure methods for singlet, doublet, and triplet molecules and conclude that, while NOCIS provides the best results and preserves the spatial symmetry of the wavefunction, 1C-NOCIS retains much of the accuracy of NOCIS at a dramatically reduced cost. For molecules with closed-shell ground states, STEX and 1C-NOCIS are identical.</div>


2003 ◽  
Vol 68 (12) ◽  
pp. 2297-2308 ◽  
Author(s):  
Max Mühlhäuser ◽  
Melanie Schnell ◽  
Sigrid D. Peyerimhoff

Multireference configuration interaction calculations are carried out for ground and excited states of trichloromethanol to investigate two important photofragmentation processes relevant to atmospheric chemistry. For CCl3OH five low-lying excited states in the energy range between 6.1 and 7.1 eV are found to be highly repulsive for C-Cl elongation leading to Cl2COH (X2A') and Cl (X2P). Photodissociation along C-O cleavage resulting in Cl3C (X2A') and OH (X2Π) has to overcome a barrier of about 0.8 eV (13A'', 11A'') and 1.2 eV (13A') because the low-lying excited states 11A'', 13A' and 13A'' become repulsive only after elongating the C-O bond by about 0.3 Å.


1980 ◽  
Vol 58 (16) ◽  
pp. 1687-1690 ◽  
Author(s):  
Delano P. Chong

The excitation energies calculated by the HAM/3 procedure for ΠΠ* transitions in linear molecules can be internally inconsistent by as much as ± 0.6 eV. In the recent study by Åsbrink etal., the problem was avoided by adopting Recknagel's expressions and requiring the proper average ΠΠ* excitation energy. In this paper, we trace the small inconsistency back to its origin in HAM/3 theory and derive the analytical expression for the energy correction as well as Recknagel's formulas. Numerical examples studied include all seven linear molecules investigated by Åsbrink etal. The explicit expression for the correction enables us to perform meaningful configuration-interaction calculations on the excited states, as illustrated by the carbon suboxide molecule.


Sign in / Sign up

Export Citation Format

Share Document