Canadian Journal of Chemistry
Latest Publications


TOTAL DOCUMENTS

24653
(FIVE YEARS 382)

H-INDEX

128
(FIVE YEARS 6)

Published By Canadian Science Publishing

1480-3291, 0008-4042

2022 ◽  
pp. 1-9
Author(s):  
Nan Lu ◽  
Hui Liang ◽  
Chengxia Miao ◽  
Xiaozheng Lan ◽  
Ping Qian

The mechanism for DMAP-promoted [4 + 2]-annulation of prop-2-ynylsulfonium with isatoic anhydride is investigated using the M06-2X functional. The reaction comprises isomerization of prop-2-ynylsulfonium in stage 1. Stage 2 includes DMAP-promoted deprotonation, nucleophilic addition, ring opening, and decarboxylation. Three steps of intramolecular cycloaddition, DMAP-promoted protonation, and dealkylation occur in stage 3, generating methylated DMAP and neutral thioether, which undergo double-bond isomerization to yield 3-methylthio-4-quinolone. The ability of DMAP to promote the reaction lies in the barrier decrease for alkyne isomerization, deprotonation/protonation of allenes, and dealkylation as effective bases for transferring protons and methyl groups. The roles of prop-2-ynylsulfonium and isatoic anhydride were demonstrated to be C2 and C4 synthons via Multiwfn analysis on the frontier molecular orbital. An alternative path was also confirmed by the Mayer bond order of the vital transition states.


2021 ◽  
pp. 1-8
Author(s):  
Khue Nguyen ◽  
Pavle V. Radovanovic

Defects, both native and extrinsic, critically determine functional properties of metal oxides. Gallium oxide has recently gained significant attention for its promise in microelectronics, owing to the unique combination of conductivity and high breakdown voltage, and solid-state lighting, owing to the strong photoluminescence in the visible spectral region. These properties are associated with the presence of native defects that can form both donor and acceptor states in Ga2O3. Recently, Ga2O3 nanocrystal synthesis in solution and optical glasses has been developed, allowing for a range of new applications in photonics, lighting, and photocatalysis. This review focuses on the structure and properties of Ga2O3 nanocrystals with a particular emphasis on the electronic structure and interaction of defects in reduced dimensions and their role in the observed photoluminescence properties. In addition to native defects, the effect of selected external impurities, including lanthanide and aliovalent dopants, and alloying on the emission properties of Ga2O3 nanocrystals are also discussed.


2021 ◽  
pp. 1-8
Author(s):  
Scott G. Harroun ◽  
Yaoting Zhang ◽  
Yu-Syuan Lin ◽  
Huan-Tsung Chang

Thymine-1-acetic acid (TAA) is a modified nucleobase often used to add thymine functionality to materials. This study reports the Raman band assignments for TAA by comparing its experimental and density functional theory (DFT) simulated Raman spectra. Further comparison of experimental surface-enhanced Raman spectroscopy (SERS) of TAA on silver nanoparticles (Ag NPs) with simulated spectra of various complexes of xAg+ (x = 1, 2, or 3) and TAA reveals its likely adsorption orientation on the Ag NPs. This is one of the few studies that has achieved reasonably accurate simulation of SERS by employing multiple unconnected Ag+ ions, which could represent a compromise between a single atom or ion on one hand and a computationally expensive cluster on the other.


Author(s):  
Devesh K. Pathak ◽  
D Dayanand ◽  
O P Thakur ◽  
Rajesh Kumar

Different advanced techniques including Raman area mapping and Raman thermal imaging has been used to investigate various properties of large area iron oxide thin films deposited by spray pyrolysis, on a large area of crystalline silicon substrates under controlled external parameters. Morphological studies reveal that the obtained films acquire lateral faceted crystalline structure of iron oxide. The Raman and SEM images, in unison, confirm the presence and large area distribution of the nano crystals of Fe2O3 phase. Thermal Raman imaging reveals that the obtained iron oxide thin films are robust and thus can be used for appropriate technological applications like electromagnetic shielding.


Author(s):  
Deepika Maliwal ◽  
Raghuvir R. S. Pissurlenkar ◽  
Vikas Telvekar

Diabetes is a major health issue that half a billion people affected worldwide. It is a serious, long-term medical condition majorly impacting the lives and well-being of individuals, families, and societies at large. It is amongst the top 10 diseases responsible for the death amongst adults with an expected rise to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045. The carbohydrates absorbed into the body are hydrolyzed by pancreatic α-amylase and other enzymes, human α-glucosidase. The α-amylase and α-glucosidase are validated therapeutic targets in the treatment of Type II diabetes (T2DM) as they play a vital role in modulating the blood glucose post meal. Herein, we report novel and diverse molecules as potential candidates, with predicted affinity for α-amylase and α-glucosidase. These molecules have been identified via hierarchical multistep docking of small molecules database with the estimated binding free energies. A Glide XP Score cutoff −8.00 kcal/mol was implemented to filter out non potential molecules. Four molecules viz. amb22034702, amb18105639, amb17153304, and amb9760832 have been identified after an exhaustive computational study involving, evaluation of binding interactions and assessment of the pharmacokinetics and toxicity profiles. The in-depth analysis of protein– ligand interactions was performed using a 100ns molecular dynamics (MD) simulation to establish the dynamic stability. Furthermore MM-GBSA based binding free energies were computed for 1000 trajectory snapshots to ascertain the strong binding affinity of these molecules for α-amylase and αglucosidase. The identified molecules can be considered as promising candidates for further drug development through necessary experimental assessments.


2021 ◽  
pp. 1-11
Author(s):  
Aafaq A. Tantray ◽  
Nitin R. Rode ◽  
Sandesh S. Shinde ◽  
Vinod Nandre ◽  
Kisan M. Kodam ◽  
...  

Ionic liquids (ILs) have remarkable properties and applications in many areas of science. Phosphonium ILs have become important because of their unique chemical and thermal stabilities. The present work is focused on the synthesis, characterisation, physicochemical properties, and microbial toxicity assessment of phosphonium ILs bearing seven different fatty acid anions. The structures of the synthesised ILs were confirmed by 1H and 13C nuclear magnetic resonance (NMR) and FTIR spectroscopy. Physicochemical properties such as density and viscosity of pure ILs were measured at temperatures ranging from 298.15 to 313.15 K. The experimental density decreased, whereas the viscosity increased with an increasing number of carbon atoms in the anion. The derived properties were also found to be anion dependent. The thermal decomposition temperature was investigated by TGA. Subsequently, the toxicity profile of the ILs was determined for selected Gram positive and Gram negative bacteria and some species of fungi in terms of minimum inhibitory concentrations (MIC). The results show that the antimicrobial activities of the ILs are strongly related to the structures of the ILs, where an increase in toxicity was observed with increasing alkyl group chain length of the fatty acid anion.


Author(s):  
Hamed Ghanbari ◽  
Katherine N. Robertson ◽  
Jason Clyburne ◽  
Ebrahim Soleimani

N-heterocyclic carbenes [1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 1a (IMes) or 1,3-bis(2,6-di-iso-propylphenyl)imidazolidene 1b (SIPr)] react with the polarized alkenes 2 and 4 to form the crystalline betaines 3a, 3b and 5a. Furthermore, a one-pot reaction between an aldehyde, malonitrile, and an imidazolium salt of an N-heterocyclic carbene has been developed for the efficient preparation of betaine 5a without isolation of the free carbene. Full characterization data, including X-ray crystal structures, is reported for the three synthesized betaines. The structures of the betaines 3a, 3b and 5a shed new light on the initial products formed in the reactions between N-heterocyclic carbenes and compounds containing polarized double bonds.


Author(s):  
Thomas Preston

Slow condensed phase diffusion in organic aerosol particles can impede many chemical and physical processes associated with atmospheric aerosol (e.g. gas-particle equilibrium partitioning). The characteristic times associated with these high viscosity particles are typically modelled using a concentration-dependent diffusivity within a purely Fickian framework. In that model, the medium in which diffusion is taking place is treated as being inviscid as far as mass transport is concerned. In this report, we investigate the validity of assuming that the viscosity is equal to zero by using a transport model that includes viscous pressure gradients. It is found that the effect of viscosity is negligible for particles with radii that are larger than 100 nm but, below that radius, it can delay water uptake and loss by orders of magnitude for physically realistic viscosities. However, if the Stokes-Einstein relation is obeyed then, even for nanosized particles, viscosity can be ignored. In addition to numerical calculations, a dimensionless Deborah number is defined that indicates the significance of Fickian diffusion compared to the rheological response during water transport.


2021 ◽  
pp. 1-9
Author(s):  
Maxwell Goldman ◽  
Yining Huang

Crystallization of DNL-6, a silicoaluminophosphate (SAPO) based molecular sieve with the RHO topology, was investigated under both the hydrothermal synthesis (HTS) and dry-gel conversion (DGC) conditions. Crystallization of DNL-6 under the HTS conditions is rather fast. But a combination of crystallization under the DGC conditions and reducing reaction temperature slow down the reactions, allowing for intermediates to be captured. Under the DGC conditions, DNL-6 crystallizes through a semi-crystalline layered phase. The nature of this intermediate is aluminophosphate (AlPO) rather than SAPO with most P atoms having a local environment of P(–O–Al)3(OH). The surfactant (cetyltrimethylammonium chloride) used for synthesis appears to be part of the layered intermediate. Si is directly incorporated in the DNL-6 framework via SM II mechanism when the semi-crystalline AlPO phase is transforming to DNL-6 with the assistance of a very small amount of water. Both the structure directing agent and the surfactant play a role in the formation of DNL-6, as they were found within the final synthesized products. SEM data show that hydrothermal synthesis produces a much more crystalline product. The facts that the semi-crystalline layered phase was also observed in the powder X-ray diffraction patterns of the solid samples obtained under the HTS conditions and that the evolution of the local structure around P and Al in the intermediate phases are similar imply that under the reaction conditions employed in the present study, the formation pathways of DNL-6 under the HTS and DGC conditions appear to have some similarities.


Author(s):  
Oluwatoyin Enitan Jegede ◽  
Nafisul Haque ◽  
Andrew M. Mullis ◽  
Robert F. Cochrane

Arc melted and drop tube processed Cu – 68.5 at. % Co alloy has been subjected to differential thermal analysis (DTA). The liquidus temperature determined from the DTA curves in the arc melt sample (1664 K) was found to be close to phase diagram estimate of 1662 K. In contrast as a result of liquid phase separation in the drop tube samples, the values obtained in the powders were much lower mainly because the compositions of the demixed phases vary from that of the parent melt. The liquidus temperature of the 850 + μm powders was 1632 K while that of the < 38 μm sieve size powder was 1616 K. This variance is due to the asymmetric nature of the metastable phase diagram of the system.


Sign in / Sign up

Export Citation Format

Share Document