scholarly journals Examples of groups which have a graphical regular representation

1977 ◽  
Vol 19 (3) ◽  
pp. 287-288
Author(s):  
Eiichi Bannai
1972 ◽  
Vol 24 (6) ◽  
pp. 1009-1018 ◽  
Author(s):  
Lewis A. Nowitz ◽  
Mark E. Watkins

The present paper is a sequel to the previous paper bearing the same title by the same authors [3] and which will be hereafter designated by the bold-face Roman numeral I. Further results are obtained in determining whether a given finite non-abelian group G has a graphical regular representation. In particular, an affirmative answer will be given if (|G|, 6) = 1.Inasmuch as much of the machinery of I will be required in the proofs to be presented and a perusal of I is strongly recommended to set the stage and provide motivation for this paper, an independent and redundant introduction will be omitted in the interest of economy.


Author(s):  
Joy Morris ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractIn this paper, we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In this paper, we approach the corresponding question for undirected Cayley graphs. The situation is complicated by the fact that there are two infinite families of groups that do not admit any graphical regular representation (GRR). The strategy for digraphs involved analysing separately the cases where the regular group R has a nontrivial proper normal subgroup N with the property that the automorphism group of the digraph fixes each N-coset setwise, and the cases where it does not. In this paper, we deal with undirected graphs in the case where the regular group has such a nontrivial proper normal subgroup.


1972 ◽  
Vol 24 (6) ◽  
pp. 993-1008 ◽  
Author(s):  
Lewis A. Nowitz ◽  
Mark E. Watkins

In this paper, all groups and graphs considered are finite and all graphs are simple (in the sense of Tutte [8, p. 50]). IfXis such a graph with vertex setV(X)and automorphism groupA(X),we say thatXis agraphical regular representation(GRR) of a given abstract groupGif(I) G ≅ A(X) , and(II)A(X)acts onV(X) as a regular permutation group; that is, givenu, v∈V(X), there exists a uniqueφ∈A(X)for whichφ(u) =v.That for any abstract groupGthere exists a graphXsatisfying (I) is well-known (cf. [3]).


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


10.53733/90 ◽  
2021 ◽  
Vol 52 ◽  
pp. 109-143
Author(s):  
Astrid An Huef ◽  
Marcelo Laca ◽  
Iain Raeburn

We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.


Author(s):  
PIOTR ŚNIADY

We study the asymptotics of the reducible representations of the wreath products G≀Sq = Gq ⋊ Sq for large q, where G is a fixed finite group and Sq is the symmetric group in q elements; in particular for G = ℤ/2ℤ we recover the hyperoctahedral groups. We decompose such a reducible representation of G≀Sq as a sum of irreducible components (or, equivalently, as a collection of tuples of Young diagrams) and we ask what is the character of a randomly chosen component (or, what are the shapes of Young diagrams in a randomly chosen tuple). Our main result is that for a large class of representations, the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian. The considered class consists of the representations for which the characters asymptotically almost factorize and it includes, among others, the left regular representation therefore we prove the analogue of Kerov's central limit theorem for wreath products.


Sign in / Sign up

Export Citation Format

Share Document