An analytical model of fatigue crack growth based on the crack-tip plasticity

1991 ◽  
Vol 38 (6) ◽  
pp. 413-437 ◽  
Author(s):  
Sahasakmontri Kiertisak ◽  
Horii Hideyuki
2001 ◽  
Vol 81 (5) ◽  
pp. 1283-1303 ◽  
Author(s):  
K. Sadanandaa, Dorai-Nirmal V. Ramaswamy

Author(s):  
E. Sgambitterra ◽  
P. Magarò ◽  
F. Niccoli ◽  
F. Furgiuele ◽  
C. Maletta

AbstractFatigue crack growth of austenitic and martensitic NiTi shape memory alloys was analyzed, with the purpose of capturing the effects of distinct stress-induced transformation mechanics in the two crystal structures. Mode I crack growth experiments were carried out, and near-crack-tip displacements were captured by in-situ digital image correlation (DIC). A special fitting procedure, based on the William’s solution, was used to estimate the effective stress intensity factor (SIF). The SIF was also computed by linear elastic fracture mechanics (LEFM) as well as by a special analytical model that takes into account the unique thermomechanical response of SMAs. A significant difference in the crack growth rate for the two alloys was observed, and it has been attributed to dissimilar dissipative phenomena and different crack-tip stress–strain fields, as also directly observed by DIC. Finally, it was shown that the predictions of the analytical method are in good agreement with effective results obtained by DIC, whereas a very large mismatch was observed with LEFM. Therefore, the proposed analytical model can be actually used to analyze fatigue crack propagation in both martensitic and austenitic NiTi.


2001 ◽  
Vol 81 (5) ◽  
pp. 1283-1303 ◽  
Author(s):  
K. Sadananda ◽  
D.N. V. Ramaswamy

2007 ◽  
Vol 348-349 ◽  
pp. 105-108 ◽  
Author(s):  
Sylvie Pommier

Cyclic plasticity in the crack tip region is at the origin of various history effects in fatigue. For instance, fatigue crack growth in mode I is delayed after the application of an overload because of the existence of compressive residual stresses in the overload’s plastic zone. Moreover, if the overload’s ratio is large enough, the crack may grow under mixed mode condition until it has gone round the overload’s plastic zone. Thus, crack tip plasticity modifies both the kinetics and the crack’s plane. Therefore modeling the growth of a fatigue crack under complex loading conditions requires considering the effects of crack tip plasticity. Finite element analyses are useful for analyzing crack tip plasticity under various loading conditions. However, the simulation of mixed mode fatigue crack growth by elastic-plastic finite element computations leads to huge computation costs, in particular if the crack doesn’t remain planer. Therefore, in this paper, the finite element method is employed only to build a global constitutive model for crack tip plasticity under mixed mode loading conditions. Then this model can be employed, independently of any FE computation, in a mixed mode fatigue crack growth criterion including memory effects inherited from crack tip plasticity. This model is developed within the framework of the thermodynamics of dissipative processes and includes internal variables that allow modeling the effect of internal stresses and to account for memory effects. The model was developed initially for pure mode I conditions. It was identified and validated for a 0.48%C carbon steel. It was shown that the model allows modeling fatigue crack growth under various variable amplitude loading conditions [1]. The present paper aims at showing that a similar approach can be applied for mixed mode loading conditions so as to model, finally, mixed mode fatigue crack growth.


Sign in / Sign up

Export Citation Format

Share Document