Electrical responses of identified myenteric neurons to distension and mucosal stimulation of the isolated guinea-pig distal colon

1992 ◽  
Vol 103 (4) ◽  
pp. 1403
Author(s):  
T.K. Smith ◽  
T. Feng
2003 ◽  
Vol 124 (4) ◽  
pp. A545 ◽  
Author(s):  
Paul R. Wade ◽  
Brian Gulbransen ◽  
Jacob Lieb

2000 ◽  
Vol 278 (2) ◽  
pp. G273-G280 ◽  
Author(s):  
B. A. Moore ◽  
S. Vanner

This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating “myenteric chamber” from the recording side “submucosal chamber,” all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.


1988 ◽  
Vol 255 (2) ◽  
pp. G184-G190 ◽  
Author(s):  
P. R. Wade ◽  
J. D. Wood

Intracellular recording methods were used in vitro to analyze the synaptic behavior of neurons in myenteric ganglia of guinea pig distal colon. Fast excitatory postsynaptic potentials (EPSPs) were observed in a variety of types of colonic neurons. Both spontaneous and stimulus-evoked EPSPs were abolished or suppressed by addition of hexamethonium, tetrodotoxin, or elevation of Mg2+ and reduction of Ca2+ in the bathing medium. Individual neurons usually received inputs from several fiber tracts and multiple EPSPs were sometimes evoked by electrical stimulation of single-fiber tracts. Stimulus-evoked fast EPSPs were always of greater amplitude, longer duration, and longer decay time than were spontaneous fast EPSPs in the same neurons. No rundown of the fast EPSPs occurred during prolonged stimulation at frequencies up to 10 Hz. Repetitive stimulation evoked slow depolarizing potentials (slow EPSPs) in 25% of the neurons. Characteristics of the slow EPSPs were 1) slow rise times, 2) duration in the seconds time domain, 3) enhanced excitability, 4) increased input resistance, and 5) reduction of hyperpolarizing after-potentials. In general, the variety of synaptic potentials and the properties of the events were the same as found in myenteric neurons of the guinea pig small bowel. Compared with synaptic behavior of small intestinal myenteric neurons, the notable differences were absence of the rundown phenomenon for fast EPSPs in the colonic neurons and a greater incidence of spontaneously occurring fast EPSPs.


Sign in / Sign up

Export Citation Format

Share Document