Biomimetic dye affinity chromatography for the purification of bovine heart lactate dehydrogenase

1995 ◽  
Vol 718 (1) ◽  
pp. 35-44 ◽  
Author(s):  
N.E. Labrou ◽  
Y.D. Clonis
1975 ◽  
Vol 151 (3) ◽  
pp. 631-636 ◽  
Author(s):  
R I Brinkworth ◽  
C J Masters ◽  
D J Winzor

Rabbit muscle lactate dehydrogenase was subjected to frontal affinity chromatography on Sepharose-oxamate in the presence of various concentrations of NADH and sodium phosphate buffer (0.05 M, pH 6.8) containing 0.5 M-NaCl. Quantitative interpretation of the results yields an intrinsic association constant of 9.0 × 104M−1 for the interaction of enzyme with NADH at 5°C, a value that is confirmed by equilibrium-binding measurements. In a second series of experiments, zonal affinity chromatography of a mouse tissue extract under the same conditions was used to evaluate assoication constants of the order 2 × 105M−1, 3 × 105M−1, 4 × 105M−1, 7 × 105M−1 and 2 × 106M−1 for the interaction of NADH with the M4, M3H, M2H2, MH3 and H4 isoenzymes respectively of lactate dehydrogenase.


1995 ◽  
Vol 710 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Igor Yu. Galaev ◽  
Pär Arvidsson ◽  
Bo Mattiasson

1996 ◽  
Vol 10 (3) ◽  
pp. 211-214 ◽  
Author(s):  
Silvia A. Camperi ◽  
Mariano Grasselli ◽  
Osvaldo Cascone

1973 ◽  
Vol 133 (3) ◽  
pp. 515-520 ◽  
Author(s):  
C. R. Lowe ◽  
P. D. G. Dean

The interaction of two isoenzymes of lactate dehydrogenase from pig heart muscle (H4) and rabbit skeletal muscle (M4), with immobilized nucleotides was examined: the effects of pH and temperature on the binding of lactate dehydrogenase were studied with immobilized NAD+ matrices. The influence of substrate, product and sulphite on the binding of heart muscle lactate dehydrogenase to immobilized NAD+ was investigated. The interaction of both lactate dehydrogenase isoenzymes with immobilized pyridine and adenine nucleotides and their derivatives were measured. The effects of these parameters on the interaction of lactate dehydrogenase with immobilized nucleotides were correlated with the known kinetic and molecular properties of the enzymes in free solution.


Sign in / Sign up

Export Citation Format

Share Document