190. Isolated rat adrenal zona glomerulosa cells: Role of cyclic AMP in [ASP1-VAL5] angiotensin II (AII) and K+ stimulated steroidogenesis

1982 ◽  
Vol 17 (3) ◽  
pp. lxiv ◽  
Author(s):  
D. Schulster ◽  
B. Rafferty ◽  
L. Tsang
1974 ◽  
Vol 185 (1081) ◽  
pp. 375-407 ◽  

The densities of latex spheres and biological cells can be reliably determined from their sedimentation rate in an albumin gradient under unit gravitational force. The densities of zona glomerulosa and fasciculata cells of rat adrenals were found to be 1.072 ± 0.004 and 1.040 ± 0.001 respectively. Purified zona glomerulosa cells of rat adrenals can be prepared by gravitational sedimentation of dispersed cells from capsule strippings of the gland, which originally contain 3 to10% zona fasciculata contamination. Electron and phase microscopic examination of the sedimented glomerulosa cells and their steroidogenic response to ACTH and cyclic AMP indicate that they are reasonably free of contamination from zona fasciculata cells. Electron microscopic examination of the purified glomerulosa cells indicates that most of them are reasonably normal in structure. Their basal production of corticosterone is decreased after sedimentation. However, their maximal response of corticosterone output to serotonin and potassium and their response to all potassium concentrations is not significantly altered, indicating normal function for the cells producing steroids. Their maximal responses to ACTH, valine angiotensin II and cyclic AMP are decreased, but, at the doses used, steroidogenesis by the zona fasciculata contamination in the unfractionated preparation would be stimulated by these substances. Purified zona glomerulosa cells have about the same maximal response of corticosterone output (about twofold) to potassium, valine and isoleucine angiotensin II, serotonin and ACTH. The maximal response of the purified zona glomerulosa cells to cyclic AMP is similar to that elicited by valine and isoleucine angiotensin II, potassium, serotonin or ACTH. This indicates that if these stimuli act by increasing cyclic AMP output, then the maximal response of corticosterone output (about twofold) is defined by the limited response of the biosynthetic pathways to cyclic AMP.


1995 ◽  
Vol 145 (2) ◽  
pp. 283-289 ◽  
Author(s):  
J P Hinson ◽  
L A Cameron ◽  
S Kapas

Abstract Neuropeptide Y (NPY) has been identified in nerves supplying the adrenal cortex of several mammalian species, although its function in this tissue is unknown. The present studies, employing adrenocortical cells prepared by collagenase digestion, have shown that NPY, in the absence of other stimulants, has no effect on steroid secretion by the rat adrenal over a range of peptide concentrations (10−11 to 10 −6 mol/l). However, in the presence of physiological concentrations of ACTH, which are submaximal for the stimulation of aldosterone secretion, NPY (10−6 mol/l) significantly enhanced the secretion rate of aldosterone by rat zona glomerulosa cells in response to ACTH. This effect was specific to the rat zona glomerulosa as NPY had no effect on the response to ACTH in rat zona fasciculata cells. The effect of NPY appears to be biphasic, however, as NPY significantly attenuated the steroidogenic response to supramaximal ACTH concentrations: in rat zona glomerulosa cells the aldosterone response to 10 −8 mol ACTH/l was significantly inhibited by NPY. The effect of NPY on the ACTH response appeared to be mediated by changes in the cAMP response. NPY had no effect on the steroidogenic response to potassium ions (K+), but enhanced the response to angiotensin II. NPY (10 −6 mol/l) significantly stimulated inositol 1,4,5-trisphosphate (InsP3) production although this concentration of peptide had no effect on steroid secretion. The effects of NPY on InsP3 production were additive with those of angiotensin II. These results suggest that the role of NPY in the adrenal cortex may be to regulate the sensitivity of the zona glomerulosa to peptide stimulation. Journal of Endocrinology (1995) 145, 283–289


1981 ◽  
Vol 91 (1) ◽  
pp. 145-154 ◽  
Author(s):  
J. B. G. BELL ◽  
J. F. TAIT ◽  
S. A. S. TAIT ◽  
G. D. BARNES ◽  
B. L. BROWN

The effects of pure [Asp1, Val5]- and [Asn1, Val5]-angiotensin II and also [des-Asp1, Ile5]-angiotensin II (angiotensin III) on cyclic AMP and steroid outputs by dispersed rat capsular cells, comprising 95% zona glomerulosa and 5% zona fasciculata cells, have been studied. The results showed that [Asp1, Val5]- and [Asn1, Val5]-angiotensin II, at doses between 2·5 × 10−1 1 and 2 × 10−4 mol/l, which produced typical increases in steroidogenesis, failed to increase output of cyclic AMP. This lack of effect was observed whether the nucleotide was measured by radioimmunoassay or by adrenal binding protein and under the same conditions in which 8·4 mm-K+ consistently increased the output of cyclic AMP. Instead the results showed a small but significant decrease in cyclic AMP output with angiotensin II. Similar results were obtained with incubations for 60 rather than 120 min and with medium containing a concentration of 5 or 40 g bovine serum albumin/l. Although the levels of cyclic AMP were generally higher in the presence of the phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine, the same decrease relative to basal outputs was observed with angiotensin II which increased steroidogenesis. Angiotensin III also failed to increase output of cyclic AMP at doses (2·5×10−9 to 2·5×10−6 mol/l) which produced increases in steroid output equivalent to those obtained with angiotensin II. These results indicate that angiotensin II and III can act through a cyclic AMP- independent mechanism.


The effects of various concentrations of extracellular K + (3.6 - 13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca 2+ . Small amounts of EGTA (50 μM) were added to reduce the free Ca 2+ concentrations effectively to zero at the lowest possible total Ca 2+ concentration. At a total extracellular concentration of 2.5 mM Ca 2+ , in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K + . The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K + compared with that at 3.6 mM were highly significant ( p < 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K + . Lowering the effective free concentration of Ca 2+ to zero decreased the steroid and cAMP outputs significantly at all K + concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca 2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K + (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K + ). Nifedipine (10 -6 to 10 -4 M) was added to the incubations with the aim of specifically inhibiting Ca 2+ influx at total extracellular Ca 2+ concentra­tions of 2.5, 1.25 and 0.25 mM and with the usual K + concentrations. The cAMP outputs were reduced at all K + concentrations above 3.6 mM K + . The effect was highly significant at 10 -4 M nifedipine and a total Ca 2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca 2+ concentrations in vivo . These results indicate that cAMP plays a significant role in the stimulation of steroid output by K + particularly between 3.6 and 8.4 mM K + . In this range of K + concentrations the stimulation of cAMP seems to be controlled by increases in Ca 2+ influx. The correlation of steroid and cAMP output at the higher K + concentra­tions (between 8.4 and 13 mM K) and at the various total Ca 2+ concentra­tions is less significant. Also, with all concentrations of added nifedipine there is an ‘anomalous’ increase in steroid output at 13 mM K + and at total Ca 2+ concentrations of 2.5 and 1.25 mM. However, at the same K + concentrations and at 0.25 mM Ca 2+ , nifedipine decreases steroid outputs. Our previous data, obtained after addition of maximally effective amounts of cAMP, indicated that there were also non-cAMP mechanisms involved in the stimulation of steroidogenesis by K + in z. g. cells. The present data confirm this conclusion, particularly at K + concentrations above 8.4 mM. They also indicate that at these higher K + concentrations, by non-cAMP mechanisms increasing intracellular Ca 2+ concentrations probably inhibit steroidogenesis. We conclude, however, that in the physiological range of K + concentra­tions, the role of cAMP in zona glomerulosa cells is at least comparable in importance to that of non-cAMP mechanisms.


1982 ◽  
Vol 94 (2) ◽  
pp. 211-224 ◽  
Author(s):  
D. J. Campbell

The role of the composition of the incubation medium in determining the steroidogenic responsiveness of collagenase-dispersed rat zona glomerulosa cells was examined by studying the effect on production of aldosterone and corticosterone of (1) changes in the bovine serum albumin (BSA) concentration in Krebs–Ringer bicarbonate buffer (KRBGA), (2) dialysis of the BSA and (3) comparison of KRBGA with 'modified' Medium 199. Medium 199 was modified so that its electrolytic content was identical to that of KRBGA. Compared with 0·1–0·2% BSA in KRBGA, BSA concentrations of 0·5 and 4% caused inhibition of both basal and K+-stimulated, but not angiotensin II-stimulated steroidogenesis. This inhibitory property of BSA was not removed by dialysis. The BSA did, however, contain a dialysable factor which increased both basal steroidogenesis and the steroidogenic response to maximal K+ and angiotensin II stimulation. Both incubation media contained 0·2% BSA for the comparison of KRBGA with modified Medium 199. Modified Medium 199 increased both basal steroidogenesis and the aldosterone response to K+ stimulation (per cent increase above basal) by two- to threefold compared with KRBGA, with smaller increases in the response to ACTH and 5-hydroxytryptamine (5-HT) and a decrease in the response to cyclic AMP. In contrast, modified Medium 199 increased the aldosterone response to angiotensin II by sevenfold, from 60% (in KRBGA) to 420%. In KRBGA, angiotensin II inhibited K+-stimulated aldosterone production. This effect was produced by concentrations of angiotensin II below the threshold for steroidogenesis and could be reproduced with the angiotensin II antagonist [Sar1, Ileu8]-angiotensin II. Angiotensin II did not inhibit K+-stimulated aldosterone production in modified Medium 199. These data emphasize the importance of the composition of the incubation medium in determining the steroidogenic responsiveness of rat zona glomerulosa cells in vitro. Furthermore, these data indicate that the steroidogenic response to angiotensin II, compared with K+, ACTH, 5-HT and cyclic AMP, is more readily influenced by other, as yet unidentified, factors in the incubation medium, and are consistent with recent evidence that angiotensin II and K+ do not share a common mode of action on steroidogenesis by these cells.


1996 ◽  
Vol 119 (1) ◽  
pp. 105-111 ◽  
Author(s):  
HervéB. Aptel ◽  
Elizabeth I.M. Johnson ◽  
Michel B. Vallotton ◽  
Michel F. Rossier ◽  
Alessandro M. Capponi

Sign in / Sign up

Export Citation Format

Share Document