ROLE OF cAMP IN THE EFFECTS OF K+ ON THE STEROIDOGENESIS OF ZONA GLOMERULOSA CELLS

1999 ◽  
Vol 26 (12) ◽  
pp. 947-955 ◽  
Author(s):  
Jf Tait ◽  
Sas Tait
1995 ◽  
Vol 145 (2) ◽  
pp. 283-289 ◽  
Author(s):  
J P Hinson ◽  
L A Cameron ◽  
S Kapas

Abstract Neuropeptide Y (NPY) has been identified in nerves supplying the adrenal cortex of several mammalian species, although its function in this tissue is unknown. The present studies, employing adrenocortical cells prepared by collagenase digestion, have shown that NPY, in the absence of other stimulants, has no effect on steroid secretion by the rat adrenal over a range of peptide concentrations (10−11 to 10 −6 mol/l). However, in the presence of physiological concentrations of ACTH, which are submaximal for the stimulation of aldosterone secretion, NPY (10−6 mol/l) significantly enhanced the secretion rate of aldosterone by rat zona glomerulosa cells in response to ACTH. This effect was specific to the rat zona glomerulosa as NPY had no effect on the response to ACTH in rat zona fasciculata cells. The effect of NPY appears to be biphasic, however, as NPY significantly attenuated the steroidogenic response to supramaximal ACTH concentrations: in rat zona glomerulosa cells the aldosterone response to 10 −8 mol ACTH/l was significantly inhibited by NPY. The effect of NPY on the ACTH response appeared to be mediated by changes in the cAMP response. NPY had no effect on the steroidogenic response to potassium ions (K+), but enhanced the response to angiotensin II. NPY (10 −6 mol/l) significantly stimulated inositol 1,4,5-trisphosphate (InsP3) production although this concentration of peptide had no effect on steroid secretion. The effects of NPY on InsP3 production were additive with those of angiotensin II. These results suggest that the role of NPY in the adrenal cortex may be to regulate the sensitivity of the zona glomerulosa to peptide stimulation. Journal of Endocrinology (1995) 145, 283–289


Author(s):  
Paola Andreis ◽  
G. Albertin ◽  
Maria Conconi ◽  
G. Carraro ◽  
L. Malendowicz ◽  
...  

The effects of various concentrations of extracellular K + (3.6 - 13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca 2+ . Small amounts of EGTA (50 μM) were added to reduce the free Ca 2+ concentrations effectively to zero at the lowest possible total Ca 2+ concentration. At a total extracellular concentration of 2.5 mM Ca 2+ , in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K + . The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K + compared with that at 3.6 mM were highly significant ( p < 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K + . Lowering the effective free concentration of Ca 2+ to zero decreased the steroid and cAMP outputs significantly at all K + concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca 2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K + (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K + ). Nifedipine (10 -6 to 10 -4 M) was added to the incubations with the aim of specifically inhibiting Ca 2+ influx at total extracellular Ca 2+ concentra­tions of 2.5, 1.25 and 0.25 mM and with the usual K + concentrations. The cAMP outputs were reduced at all K + concentrations above 3.6 mM K + . The effect was highly significant at 10 -4 M nifedipine and a total Ca 2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca 2+ concentrations in vivo . These results indicate that cAMP plays a significant role in the stimulation of steroid output by K + particularly between 3.6 and 8.4 mM K + . In this range of K + concentrations the stimulation of cAMP seems to be controlled by increases in Ca 2+ influx. The correlation of steroid and cAMP output at the higher K + concentra­tions (between 8.4 and 13 mM K) and at the various total Ca 2+ concentra­tions is less significant. Also, with all concentrations of added nifedipine there is an ‘anomalous’ increase in steroid output at 13 mM K + and at total Ca 2+ concentrations of 2.5 and 1.25 mM. However, at the same K + concentrations and at 0.25 mM Ca 2+ , nifedipine decreases steroid outputs. Our previous data, obtained after addition of maximally effective amounts of cAMP, indicated that there were also non-cAMP mechanisms involved in the stimulation of steroidogenesis by K + in z. g. cells. The present data confirm this conclusion, particularly at K + concentrations above 8.4 mM. They also indicate that at these higher K + concentrations, by non-cAMP mechanisms increasing intracellular Ca 2+ concentrations probably inhibit steroidogenesis. We conclude, however, that in the physiological range of K + concentra­tions, the role of cAMP in zona glomerulosa cells is at least comparable in importance to that of non-cAMP mechanisms.


1978 ◽  
Vol 77 (1) ◽  
pp. 119-127 ◽  
Author(s):  
CAROLINE MACKIE ◽  
R. L. WARREN ◽  
E. R. SIMPSON

An increase in the concentration of extracellular potassium from 3·6 to 8·4 mmol/l had only a small delayed effect on the uptake of radioactive calcium by isolated adrenal glomerulosa cells. However, the same stimulus had a rapid and highly significant effect on the efflux of radioactive calcium from glomerulosa cells preloaded with 45Ca2+. Cells incubated in medium containing 8·4 mmol potassium/l had retained approximately 15% more radioactivity than control cells after 2·5 min and this difference was maintained for up to 90 min. There was an increase in the production of steroids by the glomerulosa cells in the presence of 8·4 mm-potassium. No effect on calcium efflux was observed in similar experiments with isolated fasciculata cells; it has been established that this concentration of potassium does not affect steroidogenesis in fasciculata cells, indicating that the effect on glomerulosa cells may be causally linked to steroidogenesis. There was no significant change in the total calcium content of glomerulosa cells in the presence of 8·4 mm-potassium. Exchangeable calcium in these cells was found to be 60% of the total calcium content.


2016 ◽  
Vol 594 (20) ◽  
pp. 5851-5860 ◽  
Author(s):  
Paula Q. Barrett ◽  
Nick A. Guagliardo ◽  
Peter M. Klein ◽  
Changlong Hu ◽  
David T. Breault ◽  
...  

1974 ◽  
Vol 185 (1081) ◽  
pp. 375-407 ◽  

The densities of latex spheres and biological cells can be reliably determined from their sedimentation rate in an albumin gradient under unit gravitational force. The densities of zona glomerulosa and fasciculata cells of rat adrenals were found to be 1.072 ± 0.004 and 1.040 ± 0.001 respectively. Purified zona glomerulosa cells of rat adrenals can be prepared by gravitational sedimentation of dispersed cells from capsule strippings of the gland, which originally contain 3 to10% zona fasciculata contamination. Electron and phase microscopic examination of the sedimented glomerulosa cells and their steroidogenic response to ACTH and cyclic AMP indicate that they are reasonably free of contamination from zona fasciculata cells. Electron microscopic examination of the purified glomerulosa cells indicates that most of them are reasonably normal in structure. Their basal production of corticosterone is decreased after sedimentation. However, their maximal response of corticosterone output to serotonin and potassium and their response to all potassium concentrations is not significantly altered, indicating normal function for the cells producing steroids. Their maximal responses to ACTH, valine angiotensin II and cyclic AMP are decreased, but, at the doses used, steroidogenesis by the zona fasciculata contamination in the unfractionated preparation would be stimulated by these substances. Purified zona glomerulosa cells have about the same maximal response of corticosterone output (about twofold) to potassium, valine and isoleucine angiotensin II, serotonin and ACTH. The maximal response of the purified zona glomerulosa cells to cyclic AMP is similar to that elicited by valine and isoleucine angiotensin II, potassium, serotonin or ACTH. This indicates that if these stimuli act by increasing cyclic AMP output, then the maximal response of corticosterone output (about twofold) is defined by the limited response of the biosynthetic pathways to cyclic AMP.


Sign in / Sign up

Export Citation Format

Share Document