Easy construction of an improved fine wire electrode for chronic single neuron recording in freely moving animals

1987 ◽  
Vol 39 (5) ◽  
pp. 649-652 ◽  
Author(s):  
Takashi Yamamoto
Cortex ◽  
2014 ◽  
Vol 60 ◽  
pp. 3-9 ◽  
Author(s):  
Elisa Frisaldi ◽  
Elisa Carlino ◽  
Michele Lanotte ◽  
Leonardo Lopiano ◽  
Fabrizio Benedetti

2004 ◽  
Vol 51 (4) ◽  
pp. 647-656 ◽  
Author(s):  
K.A. Moxon ◽  
S. Leiser ◽  
G.A. Gerhardt ◽  
K.A. Barbee ◽  
J.K. Chapin

2003 ◽  
Vol 89 (3) ◽  
pp. 1503-1518 ◽  
Author(s):  
Vassilis Raos ◽  
Gianfranco Franchi ◽  
Vittorio Gallese ◽  
Leonardo Fogassi

The somatotopy of the lateral part of dorsal premotor area F2 has been studied by means of intracortical microstimulation and single neuron recording. The results show that most of this sector of F2 is excitable with low-intensity currents (3–40 μA) and that intracortical microstimulation evokes forelimb and trunk movements. Both proximal and distal forelimb movements are evoked in similar percentages. The proximal and distal forelimb representations partially overlap. However, proximal movements tend to be located more medially (laterally to the superior precentral dimple), whereas distal movements tend to be located more laterally (medially to the spur of the arcuate sulcus). The somatotopic organization demonstrated with microstimulation is confirmed by the similar somatotopic organization of active movements and of somatosensory properties revealed by single-neuron recording. The excitability and somatotopic organization of the lateral part of area F2 are discussed in relation to previous electrophysiological and anatomical findings. The involvement of the distal forelimb representation of area F2 in programming and controlling reaching to grasp movements is suggested.


Sign in / Sign up

Export Citation Format

Share Document