low intensity
Recently Published Documents





2022 ◽  
Vol 178 ◽  
pp. 107399
Feiwang Wang ◽  
Shitao Zhang ◽  
Zhiqiang Zhao ◽  
Likun Gao ◽  
Xiong Tong ◽  

J. Flodin ◽  
R. Juthberg ◽  
P. W. Ackermann

Abstract Background Neuromuscular electrical stimulation (NMES) may prevent muscle atrophy, accelerate rehabilitation and enhance blood circulation. Yet, one major drawback is that patient compliance is impeded by the discomfort experienced. It is well-known that the size and placement of electrodes affect the comfort and effect during high-intensity NMES. However, during low-intensity NMES the effects of electrode size/placement are mostly unknown. Therefore, the purpose of this study was to investigate how electrode size and pragmatic placement affect comfort and effect of low-intensity NMES in the thigh and gluteal muscles. Methods On 15 healthy participants, NMES-intensity (mA) was increased until visible muscle contraction, applied with three electrode sizes (2 × 2 cm, 5 × 5 cm, 5 × 9 cm), in three different configurations on quadriceps and hamstrings (short-transverse (ST), long-transverse (LT), longitudinal (L)) and two configurations on gluteus maximus (short-longitudinal (SL) and long-longitudinal (LL)). Current–density (mA/cm2) required for contraction was calculated for each electrode size. Comfort was assessed with a numerical rating scale (NRS, 0–10). Significance was set to p < 0.05 and values were expressed as median (inter-quartile range). Results On quadriceps the LT-placement exhibited significantly better comfort and lower current intensity than the ST- and L-placements. On hamstrings the L-placement resulted in the best comfort together with the lowest intensity. On gluteus maximus the LL-placement demonstrated better comfort and required less intensity than SL-placement. On all muscles, the 5 × 5 cm and 5 × 9 cm electrodes were significantly more comfortable and required less current–density for contraction than the 2 × 2 cm electrode. Conclusion During low-intensity NMES-treatment, an optimized electrode size and practical placement on each individual muscle of quadriceps, hamstrings and gluteals is crucial for comfort and intensity needed for muscle contraction.

2022 ◽  
A. M. Lohof ◽  
T. Dufor ◽  
R. M. Sherrard

2022 ◽  
Vol 12 ◽  
Heather R. Siedhoff ◽  
Shanyan Chen ◽  
Hailong Song ◽  
Jiankun Cui ◽  
Ibolja Cernak ◽  

Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.

2022 ◽  
Vol 1049 ◽  
pp. 152-157
Atabek S. Ashirov ◽  
Uchkun O. Kutliev ◽  
Soyibjon Xakimov ◽  
Shavkat K. Ismailov

This article presents the results of computer modeling of small-angle scattering of Ar+ ions from the surface of the SiO2 thin film under bombardment by low-energy. The study of the trajectory of the scattered ions showed that the trajectories with two focuses are observed not only near the center of the semichannel but also nearby the surface of the atomic chain. An increase in the value of the initial energy of incident particles leads to a narrowing of the trajectory of the scattered ions, which leads to the appearance of low-intensity peaks in the energy spectrum of the scattered ions.

2022 ◽  
Vol 12 (2) ◽  
pp. 666
Mattia Dimitri ◽  
Claudia Duranti ◽  
Sara Aquino ◽  
Lucrezia Mazzantini ◽  
Jessica Iorio ◽  

Current developments in medical technology have focused on therapeutic treatments that selectively and effectively address specific pathological areas, minimizing side effects on healthy tissues. In this regard, many procedures have been developed to provide non-invasive therapy, for example therapeutic ultrasound (US). In the medical field, in particular in cancer research, it has been observed how ultrasounds can cause cell death and inhibit cell proliferation of cancer cells, while preserving healthy ones with almost negligible side effects. Various studies have shown that low intensity pulse ultrasound (LIPUS) and low intensity continuous ultrasound (LICUS) regulate the proliferation, cell differentiation and cavitation phenomena. Nowadays, there are poorly known aspects of low intensity US treatment, in terms of biophysical and biomechanical effects on target cells. The aim of this study is to set up an innovative apparatus for US treatment of pancreatic ductal adenocarcinoma (PDAC) cells, monitoring parameters such as acoustic intensity, acoustic pressure, stimulation frequency and treatment protocol. To this purpose, we have developed a custom-made set up for the US stimulation at 1.2 and 3 MHz of tridimensional (3D) cultures of PDAC cells (PANC-1, Mia Paca-2 and BxPc3 cells). Images of the 3D cultures were acquired, and the Calcein/PI assay was applied to detect US-induced cell death. Overall, the setup we have presented paves the way to an innovative protocol for tumor treatment. The system can be used either alone or in combination with small molecules or recombinant antibodies in order to propose a novel combined therapeutic approach.

Sign in / Sign up

Export Citation Format

Share Document