Speleothems, Travertines, and Paleoclimates

1983 ◽  
Vol 20 (1) ◽  
pp. 1-29 ◽  
Author(s):  
G. J. Hennig ◽  
R. Grün ◽  
K. Brunnacker

AbstractAge data for about 660 speleothems and about 140 spring-deposited travertines were collected, including many unpublished results. These data were plotted as histograms and also as error-weighted frequency curves on a 350,000-yr scale. These plots clearly show periods of increased speleothem/travertine growth as well as times of cessation. The periods of most frequent speleothem growth were between approximately 130,000 and 90,000 yr ago and since about 15,000 yr ago. Such periods before 150,000 yr ago, however, cannot be yet recognized because of a lack of sufficient data and the associated uncertainties of dates in this age range. A comparison with the oxygen-isotope record of deep-sea core V28–:238 shows a clear relationship, indicating that terrestrial calcite formation is controlled by paleoclimatic fluctuations. The evident climatic stimulation of Quaternary calcite formation is readily explained geochemically and is substantiated by the obvious difference in speleothem/travertine growth as a function of geographic position.

1986 ◽  
Vol 26 (3) ◽  
pp. 283-298 ◽  
Author(s):  
Michael Sarnthein ◽  
Helmut E. Stremme ◽  
Augusto Mangini

Marine molluscan shells from para-type and other localities of the Holsteinian interglaciation were dated by Th/U and the electron spin resonance (ESR) method to more than 350,000 and 370,000 yr B.P., beyond the limit of Th/U dating. The high age estimate is corroborated by a K/Ar age of 420,000 yr B.P. determined from volcanic ash near the base of the Ariendorf paleosol in the Middle Rhine valley believed to be a pedostratigraphic equivalent of the Holsteinian. Shells from the Herzeele marine unit III, an equivalent of the Wacken (Dömnitz) warm stage in northern France and subsequent to the Holsteinian, revealed ages between 300,000 and 350,000 yr B.P. A correlation of these two warm stages with marine oxygen-isotope stages 11 and 9 on the SPECMAP and CARTUNE time scales is suggested. From the benthic oxygen-isotope record one may infer that no exceptionally high global sea-level rise corresponds to the large transgressions of the Holstein Sea in northern Germany. Therefore, a significant proportion of the transgression was probably the result of an unusually large local glacial-isostatic depression caused by the extreme buildup of ice during the preceding Elster glaciation (stage 12). According to the deep-sea record, it lasted approximately 50% longer than the subsequent cold stage 10. The outstanding soil formation with Braunlehm and the well-developed thermal optimum of the Holsteinian are tentatively related to a phase of minimum sea-ice cover in the Norwegian-Greenland Sea, as deduced from long benthic carbon-isotope records from the central Atlantic.


2016 ◽  
Vol 175 ◽  
pp. 239-251 ◽  
Author(s):  
Stefan Markovic ◽  
Adina Paytan ◽  
Hong Li ◽  
Ulrich G. Wortmann

Sign in / Sign up

Export Citation Format

Share Document