Coevolution of self-fertilization and inbreeding depression. III. Homozygous lethal mutations at multiple loci

1991 ◽  
Vol 40 (2) ◽  
pp. 173-210 ◽  
Author(s):  
Marcy K. Uyenoyama ◽  
Donald M. Waller
Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 861-868 ◽  
Author(s):  
M Ziehe ◽  
J H Roberds

Abstract The effect of the rate of partial self-fertilization and viability selection on the magnitude of inbreeding depression was investigated for the overdominance genetic model. The influence of these factors was determined for populations with equilibrium genotypic frequencies. Inbreeding depression was measured as the normalized disadvantage in mean viability of selfed progeny as compared to outcrossed progeny. When caused by symmetric homozygous disadvantage at a single locus it is shown always to be less than one-third. Moreover, for fixed rates of self-fertilization, its maximum value is found at intermediate levels of homozygous disadvantage. As the rate of self-fertilization increases, inbreeding depression increases and the homozygote viability that results in maximum depression tends toward one-half the heterozygote viability. Symmetric selection against homozygotes at multiple loci can lead to substantially higher values than selection at a single-locus. As the number of independent loci involved increases, inbreeding depression can reach high levels even though the selfing rate is low. Viability distributions for progenies produced from both random mating and self-fertilization were derived for the case of symmetric selection at independently assorting multiple loci. Distributions of viabilities in progenies resulting from mixtures of selfing and outcrossing were shown to be bimodal when inbreeding depression is high.


Evolution ◽  
2020 ◽  
Vol 74 (7) ◽  
pp. 1301-1320
Author(s):  
Diala Abu Awad ◽  
Denis Roze

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 893-907
Author(s):  
Sara R Lipow ◽  
Robert Wyatt

Abstract Most individuals of Asclepias exaltata are self-sterile, but all plants lack prezygotic barriers to self-fertilization. To determine whether postzygotic rejection of self-fertilized ovules is due to late-acting self-incompatibility or to extreme, early acting inbreeding depression, we performed three diallel crosses among self-sterile plants related as full-sibs. The full-sibs segregated into four compatibility classes, suggesting that late acting self-incompatibility is controlled by a single gene (S-locus). Crosses between plants sharing one or both alleles at the S-locus are incompatible. An additional diallel cross was done among full-sib progeny from a cross of a self-sterile and a self-fertile plant. These progeny grouped into two compatibility classes, and plants within classes displayed varying levels of self-fertility. This suggests that the occasional self-fertility documented in natural pollinations is caused by pseudo-self-fertility alleles that alter the functioning of the S-locus.


Sign in / Sign up

Export Citation Format

Share Document